On Davenport's bound for the degree of f³ - g² and Riemann's Existence Theorem

Umberto Zannier

Acta Arithmetica (1995)

  • Volume: 71, Issue: 2, page 107-137
  • ISSN: 0065-1036

How to cite

top

Umberto Zannier. "On Davenport's bound for the degree of f³ - g² and Riemann's Existence Theorem." Acta Arithmetica 71.2 (1995): 107-137. <http://eudml.org/doc/206763>.

@article{UmbertoZannier1995,
author = {Umberto Zannier},
journal = {Acta Arithmetica},
keywords = {Hall conjecture; non-constant polynomials; degree; lower bound; weighted trees; conjecture; Riemann existence theorem},
language = {eng},
number = {2},
pages = {107-137},
title = {On Davenport's bound for the degree of f³ - g² and Riemann's Existence Theorem},
url = {http://eudml.org/doc/206763},
volume = {71},
year = {1995},
}

TY - JOUR
AU - Umberto Zannier
TI - On Davenport's bound for the degree of f³ - g² and Riemann's Existence Theorem
JO - Acta Arithmetica
PY - 1995
VL - 71
IS - 2
SP - 107
EP - 137
LA - eng
KW - Hall conjecture; non-constant polynomials; degree; lower bound; weighted trees; conjecture; Riemann existence theorem
UR - http://eudml.org/doc/206763
ER -

References

top
  1. [BCHS] B. J. Birch, S. Chowla, M. Hall, Jr., and A. Schinzel, On the difference x³-y², Norske Vid. Selsk. Forh. (Trondheim) 38 (1965), 65-69. 
  2. [B-M] W. D. Brownawell and D. Masser, Vanishing sums in function fields, Math. Proc. Cambridge Philos. Soc. 100 (1986), 427-434. Zbl0612.10010
  3. [Ca-Fr] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, 1967. 
  4. [Ch] B. Chiarellotto, On Lamé operators with finite monodromy group, Trans. Amer. Math. Soc., to appear. 
  5. [CMK] M. Conder and J. McKay, A necessary condition for transitivity of a finite permutation group, Bull. London Math. Soc. 20 (1988), 235-238. Zbl0663.20003
  6. [Dan] L. Danilov, Letter to the editor, Mat. Zametki 36 (1971), 103-107 (in Russian). 
  7. [Dav] H. Davenport, On f³(t) - g²(t), Norske Vid. Selsk. Forh. (Trondheim) 38 (1965), 86-87. 
  8. [FLS] W. Feit, R. Lyndon and L. L. Scott, A remark about permutations, J. Combin. Theory Ser. A 18 (1975), 234-235. Zbl0297.05021
  9. [Fr1] M. Fried, On a conjecture of Schur, Michigan Math. J. 17 (1970), 41-55. 
  10. [Fr2] M. Fried, Fields of definition of function fields and Hurwitz families - Groups as Galois groups, Comm. Algebra 5 (1977), 17-82. Zbl0478.12006
  11. [Fu] W. Fulton, The fundamental group of a curve, Archives of the Princeton Mathematical Library, 1966. 
  12. [Gr] A. Grothendieck, Esquisse d'un programme, preprint, 1984. 
  13. [Ha] M. Hall, Jr., The Diophantine equation x³ - y² = k, in: Computers in Number Theory, A. O. L. Atkin and B. J. Birch (eds.), Proc. Oxford 1969, Academic Press, 1971, 173-198. 
  14. [Har] F. Harary, Graph Theory, 3rd ed., Addison Wesley, 1972. 
  15. [J-S] G. Jones and D. Singerman, Maps, hypermaps and triangle groups, preprint Univ. of Southampton, July 1993. Zbl0833.20045
  16. [Lang] S. Lang, Number Theory III, Encyclopaedia Math. Sci. 60, Springer, 1991. Zbl0744.14012
  17. [La] M. Langevin, Cas d'égalité pour le Théorème de Mason et applications de la conjecture (abc), C. R. Acad. Sci. Paris 317 (1993), 441-444. 
  18. [Ma] R. C. Mason, Diophantine Equations over Function Fields, London Math. Soc. Lecture Note Ser. 96, Cambridge Univ. Press, 1984. Zbl0533.10012
  19. [Ree] R. Ree, A theorem on permutations, J. Combin. Theory Ser. A 10 (1971), 174-175. Zbl0221.05033
  20. [Se1] J. P. Serre, Topics in Galois Theory, Course at Harvard University, Fall 1988 (Notes by H. Darmon). 
  21. [Se2] J. P. Serre, Corps locaux, Hermann, Paris, 1968. 
  22. [S-V] G. B. Shabat and V. A. Voevodsky, Drawing curves over number fields, in: The Grothendieck Festschrift, vol. III, Progr. Math. 88, Birkhäuser, 1990, 199-227. Zbl0790.14026
  23. [Sie] W. Sierpiński, Elementary Theory of Numbers, edited by A. Schinzel, 2nd ed., North-Holland, 1988. 
  24. [Sin] D. Singerman, Subgroups of Fuchsian groups and finite permutation groups, Bull. London Math. Soc. 2 (1970), 319-323. Zbl0206.30804
  25. [Tr] M. Tretkoff, Algebraic extensions of the field of rational functions, Comm. Pure Appl. Math. 24 (1971), 491-497. Zbl0226.12101
  26. [U-Y] S. Uchiyama and M. Yorinaga, On the difference f³(x)-g²(x), Tsukuba J. Math. 6 (1982), 215-230. Zbl0526.12013
  27. [Vo] P. Vojta, Diophantine Approximation and Value Distribution Theory, Lecture Notes in Math. 1239, Springer, 1987. Zbl0609.14011
  28. [Wie] H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964. Zbl0138.02501
  29. [Za] U. Zannier, Some remarks on the S-unit equation in function fields, Acta Arith. 64 (1993), 87-98. Zbl0786.11019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.