Riemann existence theorem and construction of real algebraic curves

Stepan Yu. Orevkov

Annales de la Faculté des sciences de Toulouse : Mathématiques (2003)

  • Volume: 12, Issue: 4, page 517-531
  • ISSN: 0240-2963

How to cite

top

Orevkov, Stepan Yu.. "Riemann existence theorem and construction of real algebraic curves." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.4 (2003): 517-531. <http://eudml.org/doc/73615>.

@article{Orevkov2003,
author = {Orevkov, Stepan Yu.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
language = {eng},
number = {4},
pages = {517-531},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Riemann existence theorem and construction of real algebraic curves},
url = {http://eudml.org/doc/73615},
volume = {12},
year = {2003},
}

TY - JOUR
AU - Orevkov, Stepan Yu.
TI - Riemann existence theorem and construction of real algebraic curves
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2003
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 12
IS - 4
SP - 517
EP - 531
LA - eng
UR - http://eudml.org/doc/73615
ER -

References

top
  1. [1] Birch ( B.J. ), Chowla ( S.), Hall ( M.), JR., Schinzel ( A.), On the difference x3 - y2, Norske Vid. Selsk. Forh. (Trondheim ) 38, p. 65-69 (1965). Zbl0144.03901MR186620
  2. [2] Davenport ( H.), On f3(t) - g2(t), Norske Vid. Selsk. Forh. (Trondheim)38, p. 86-87 (1965). Zbl0136.25204MR186621
  3. [3] Fied;er-Le Touzé ( S.), Orientations complexes des courbes algébriques reelles, Thèse doctorale, Univ. Rennes -1 (2000). 
  4. [4] Florens ( V. ), Estimation du genre slice d'un entrelacs, applications aux courbes algébriques réelles, Thèse doctorale, Univ. Paul Sabatier, Toulouse ( 2001 ). 
  5. [5] Korchagin ( A.B. ), Construction of new M-curves of 9th degree , Lect. Notes. Math1524, p. 296-306 (1991). Zbl0785.14033MR1226261
  6. [6] Korchagin ( A.B. ), Smoothing of 6-fold singular points and constructions of 9th degree M-curves, Amer. Math. Soc. Transl. (2) 173, p. 141-155 (1996). Zbl0858.14029MR1384314
  7. [7] Orevkov ( S.Yu. ), Link theory and oval arrangements of real algebraic curves, Topology38, p. 779-810 (1999). Zbl0923.14032MR1679799
  8. [8] Orevkov ( S.Yu. ), A new affine M-sextic, Funct. Anal. and Appl.32, (1998 ) p. 141-143; II. Russ. Math. Surv.53, p. 1099-1101 (1999 ). Zbl0932.14035MR1647852
  9. [9] Orevkov ( S.Yu. ), Complex orientations of M-curves of degree 7, in Topology, Ergodic Theory, Real Algebraic Geometry . Rokhlin's Memorial, Amer. Math. Soc. Transl. ser 2202, p. 215-227. Zbl0993.14021MR1819190
  10. [10] Orevkov ( S.Yu. ), Quasipositivity test via unitary representations of braid groups and its applications to real algebraic curves, J. Knot Theory and Ramifications10, p. 1005-1023 (2001 ). Zbl1030.20026MR1867106
  11. [11] Stothers ( W.W.), Polynomial identities and Hauptmoduln , Quart. J. Math (2)32, p. 349-370 (1981). Zbl0466.12011MR625647
  12. [12] Viro ( O. Ya. ), Progress in the topology of real algebraic varieties over the last six years, Russian Math. Surveys41, p. 55-82 (1986). Zbl0619.14015MR854239
  13. [13] Viro ( O. Ya. ), Real algebraic plane curves: constructions with controlled topology, Leningrad J. Math.1, p. 1059-1134 (1990). Zbl0732.14026MR1036837
  14. [14] Zannier ( U.), On Davenport's bound for the degree of f3 - g2 and Riemann's existence theorem, Acta Arithm.71, p. 107-137 (1995); Addenda, ibid.74 p. 387 (1996). Zbl0840.11015MR1339121

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.