On sums involving reciprocals of the largest prime factor of an integer II

Aleksandar Ivić

Acta Arithmetica (1995)

  • Volume: 71, Issue: 3, page 229-251
  • ISSN: 0065-1036

How to cite

top

Aleksandar Ivić. "On sums involving reciprocals of the largest prime factor of an integer II." Acta Arithmetica 71.3 (1995): 229-251. <http://eudml.org/doc/206771>.

@article{AleksandarIvić1995,
author = {Aleksandar Ivić},
journal = {Acta Arithmetica},
keywords = {sums involving reciprocals; largest prime factor of an integer; Riemann hypothesis; asymptotic formulas; Dickman function},
language = {eng},
number = {3},
pages = {229-251},
title = {On sums involving reciprocals of the largest prime factor of an integer II},
url = {http://eudml.org/doc/206771},
volume = {71},
year = {1995},
}

TY - JOUR
AU - Aleksandar Ivić
TI - On sums involving reciprocals of the largest prime factor of an integer II
JO - Acta Arithmetica
PY - 1995
VL - 71
IS - 3
SP - 229
EP - 251
LA - eng
KW - sums involving reciprocals; largest prime factor of an integer; Riemann hypothesis; asymptotic formulas; Dickman function
UR - http://eudml.org/doc/206771
ER -

References

top
  1. [1] K. Alladi, The Turán-Kubilius inequality for integers without large prime factors, J. Reine Angew. Math. 335 (1982), 180-196. Zbl0483.10050
  2. [2] N. G. de Bruijn, On the number of positive integers ≤x and free of prime factors >y, Nederl. Akad. Wetensch. Proc. Ser. A 54 (1951), 50-60. Zbl0042.04204
  3. [3] J.-M. De Koninck and A. Ivić, Topics in Arithmetical Functions, Math. Stud. 43, North-Holland, Amsterdam, 1980. 
  4. [4] J.-M. De Koninck and A. Ivić, The distribution of the average prime divisor of an integer, Arch. Math. (Basel) 43 (1984), 37-43. Zbl0519.10027
  5. [5] P. Erdős, A. Ivić and C. Pomerance, On sums involving reciprocals of the largest prime factor of an integer, Glas. Mat. 21 (41) (1986), 283-300. 
  6. [6] A. Hildebrand, On the number of positive integers ≤x and free of prime factors >y, J. Number Theory 22 (1986), 289-307. Zbl0575.10038
  7. [7] A. Hildebrand and G. Tenenbaum, On a class of differential-difference equations arising in number theory, to appear. Zbl0797.11072
  8. [8] A. Ivić, Sum of reciprocals of the largest prime factor of an integer, Arch. Math. (Basel) 36 (1981), 57-61. 
  9. [9] A. Ivić, On some estimates involving the number of prime divisors of an integer, Acta Arith. 49 (1987), 21-33. 
  10. [10] A. Ivić and C. Pomerance, Estimates for certain sums involving the largest prime factor of an integer, in: Topics in Classical Number Theory, Colloq. Math. Soc. János Bolyai 34, North-Holland, Amsterdam, 1984, 769-789. 
  11. [11] E. Saias, Sur le nombre des entiers sans grand facteur premier, J. Number Theory 32 (1989), 78-99. Zbl0676.10028
  12. [12] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Inst. Élie Cartan 13, Université de Nancy, 1990. 
  13. [13] T. Z. Xuan, Estimates of certain sums involving reciprocals of the largest prime factor of an integer, J. Beijing Normal Univ. (N.S.) 1 (1988), 11-16 (in Chinese). Zbl0684.10045
  14. [14] T. Z. Xuan, On sums involving reciprocals of certain large additive functions, Publ. Inst. Math. (Belgrade) 45 (59) (1989), 41-55 and II, Publ. Inst. Math. (Belgrade) 46 (60) (1989), 25-32. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.