On ideals free of large prime factors
- [1] Mathematics Department, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 3, page 733-772
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topScourfield, Eira J.. "On ideals free of large prime factors." Journal de Théorie des Nombres de Bordeaux 16.3 (2004): 733-772. <http://eudml.org/doc/249280>.
@article{Scourfield2004,
abstract = {In 1989, E. Saias established an asymptotic formula for $\Psi (x,y)=\left| \left\lbrace n\le x:p\mid n\Rightarrow p\le y\right\rbrace \right| $ with a very good error term, valid for $\exp \left( (\log \log x)^\{(5/3)+\epsilon \}\right) \le y\le x$, $x\ge x_\{0\}(\epsilon )$, $\epsilon >0.$ We extend this result to an algebraic number field $K$ by obtaining an asymptotic formula for the analogous function $\Psi _\{K\}(x,y)$ with the same error term and valid in the same region. Our main objective is to compare the formulae for $\Psi (x,y)$ and $\Psi _\{K\}(x,y),$ and in particular to compare the second term in the two expansions.},
affiliation = {Mathematics Department, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.},
author = {Scourfield, Eira J.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {smooth ideals; Dickman function; Dedekind zeta function},
language = {eng},
number = {3},
pages = {733-772},
publisher = {Université Bordeaux 1},
title = {On ideals free of large prime factors},
url = {http://eudml.org/doc/249280},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Scourfield, Eira J.
TI - On ideals free of large prime factors
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 3
SP - 733
EP - 772
AB - In 1989, E. Saias established an asymptotic formula for $\Psi (x,y)=\left| \left\lbrace n\le x:p\mid n\Rightarrow p\le y\right\rbrace \right| $ with a very good error term, valid for $\exp \left( (\log \log x)^{(5/3)+\epsilon }\right) \le y\le x$, $x\ge x_{0}(\epsilon )$, $\epsilon >0.$ We extend this result to an algebraic number field $K$ by obtaining an asymptotic formula for the analogous function $\Psi _{K}(x,y)$ with the same error term and valid in the same region. Our main objective is to compare the formulae for $\Psi (x,y)$ and $\Psi _{K}(x,y),$ and in particular to compare the second term in the two expansions.
LA - eng
KW - smooth ideals; Dickman function; Dedekind zeta function
UR - http://eudml.org/doc/249280
ER -
References
top- N.G. de Bruijn, On the number of positive integers and free of prime factors . Indag. Math. 13 (1951), 50–60. Zbl0042.04204MR46375
- N.G. de Bruijn, The asymptotic behaviour of a function occurring in the theory of primes.J. Indian Math. Soc. (NS) 15 (1951), 25–32. Zbl0043.06502MR43838
- J.A. Buchmann, C.S Hollinger, On smooth ideals in number fields. J. Number Theory 59 (1996), 82–87. Zbl0859.11060MR1399699
- K. Dilcher, Generalized Euler constants for arithmetical progressions. Math. Comp. 59 (1992), 259–282. Zbl0752.11033MR1134726
- P. Erdös, A. Ivić, C. Pomerance,On sums involving reciprocals of the largest prime factor of an integer. Glas. Mat. Ser. III 21 (41) (1986), 283–300. Zbl0615.10055MR896810
- J.H. Evertse, P. Moree, C.L. Stewart, R. Tijdeman, Multivariate Diophantine equations with many solutions. Acta Arith. 107 (2003), 103–125. Zbl1026.11041MR1970818
- J.B. Friedlander, On the large number of ideals free from large prime divisors. J. Reine Angew. Math. 255 (1972), 1–7. Zbl0243.10034MR299579
- J.R. Gillett, On the largest prime divisors of ideals in fields of degree n. Duke Math. J. 37 (1970), 589–600. Zbl0211.07804MR268153
- L.J. Goldstein, Analytic Number Theory, Prentice-Hall, Inc., New Jersey, 1971. Zbl0226.12001MR498335
- D.G. Hazlewood,On ideals having only small prime factors. Rocky Mountain J. Math. 7 (1977), 753–768. Zbl0373.12004MR444591
- A. Hildebrand, On the number of positive integers and free of prime factors . J. Number Theory 22 (1986), 289–307. Zbl0575.10038MR831874
- A. Hildebrand, G. Tenenbaum, On integers free of large prime factors. Trans. Amer. Math. Soc. 296 (1986), 265–290. Zbl0601.10028MR837811
- M.N. Huxley, N. Watt, The number of ideals in a quadratic field II. Israel J. Math. 120 (2000), part A, 125–153. Zbl0977.11049MR1815373
- A. Ivić, Sum of reciprocals of the largest prime factor of an integer. Arch. Math. 36 (1981), 57–61. Zbl0436.10019MR612237
- A. Ivić, On some estimates involving the number of prime divisors of an integer. Acta Arith. 49 (1987), 21–33. Zbl0573.10038MR913761
- A. Ivić, On sums involving reciprocals of the largest prime factor of an integer II. Ibid 71 (1995), 229–251. Zbl0820.11052MR1339128
- A. Ivić, The Riemann zeta-function, Wiley, New York - Chichester - Brisbane - Toronto - Singapore, 1985. Zbl0556.10026MR792089
- A. Ivić, C. Pomerance, Estimates for certain sums involving the largest prime factor of an integer. In: Topics in Classical Number Theory (Budapest,1981), Colloq. Math. Soc. János Bolyai 34, North-Holland, Amsterdam, 1984, 769–789. Zbl0546.10037MR781162
- U. Krause, Abschätzungen für die Funktion in algebraischen Zahlkörpern. Manuscripta Math. 69 (1990), 319–331. Zbl0759.11028MR1078363
- E. Landau, Einführung in die elementare und analytische Theorie der algebraische Zahlen und Ideale. Teubner, Leipzig, 1927, reprint Chelsea, New York, 1949. Zbl0045.32202
- S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, Mass. - Menlo Park, Calif. - London - Don Mills, Ont., 1970. Zbl0211.38404MR282947
- P. Moree, An interval result for the number field function. Manuscripta Math. 76 (1992), 437–450. Zbl0772.11044MR1185030
- P. Moree, On some claims in Ramanujan’s ‘unpublished’ manuscript on the partition and tau functions, arXiv:math.NT/0201265. Zbl1066.11059MR2111687
- W. Narkiewicz, Elementary and analytic theory of algebraic numbers. PNW, Warsaw, 1974. Zbl0276.12002MR347767
- W.G. Nowak, On the distribution of integer ideals in algebraic number fields. Math. Nachr. 161 (1993), 59–74. Zbl0803.11061MR1251010
- E. Saias, Sur le nombre des entiers sans grand facteur premier. J. Number Theory 32 (1989), 78–99. Zbl0676.10028MR1002116
- E.J. Scourfield, On some sums involving the largest prime divisor of n, II. Acta Arith. 98 (2001), 313–343. Zbl0993.11047MR1829776
- H. Smida, Valeur moyenne des fonctions de Piltz sur entiers sans grand facteur premier. Ibid 63 (1993), 21–50. Zbl0769.11034MR1201617
- A.V. Sokolovskii, A theorem on the zeros of Dedekind’s zeta-function and the distance between ‘neighbouring’ prime ideals, (Russian). Ibid 13 (1968), 321–334. Zbl0153.07003MR223332
- W. Staś, On the order of Dedekind zeta-function in the critical strip. Funct. Approximatio Comment. Math. 4 (1976), 19–26. Zbl0357.12012MR439770
- G. Tenenbaum, Introduction to analytic and probabilistic number theory, CUP, Cambridge, 1995. Zbl0831.11001MR1366197
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.