Theta and L-function splittings

Jeffrey Stopple

Acta Arithmetica (1995)

  • Volume: 72, Issue: 2, page 101-108
  • ISSN: 0065-1036

How to cite

top

Jeffrey Stopple. "Theta and L-function splittings." Acta Arithmetica 72.2 (1995): 101-108. <http://eudml.org/doc/206787>.

@article{JeffreyStopple1995,
author = {Jeffrey Stopple},
journal = {Acta Arithmetica},
keywords = {-function; base change lift; simultaneous Hecke cusp eigenform; theta lift; Mellin transform; splitting of the theta function},
language = {eng},
number = {2},
pages = {101-108},
title = {Theta and L-function splittings},
url = {http://eudml.org/doc/206787},
volume = {72},
year = {1995},
}

TY - JOUR
AU - Jeffrey Stopple
TI - Theta and L-function splittings
JO - Acta Arithmetica
PY - 1995
VL - 72
IS - 2
SP - 101
EP - 108
LA - eng
KW - -function; base change lift; simultaneous Hecke cusp eigenform; theta lift; Mellin transform; splitting of the theta function
UR - http://eudml.org/doc/206787
ER -

References

top
  1. [I] A. Erdélyi et al., Tables of Integral Transforms, based, in part, on notes left by Harry Bateman, McGraw-Hill, 1954. 
  2. [H] A. Erdélyi et al., Higher Transcendental Functions, based, in part, on notes left by Harry Bateman, McGraw-Hill, 1953. 
  3. [G] I. S. Gradshteĭn and I. M. Ryzhik, Tables of Integrals, Series, and Products, 4th ed., Academic Press, 1980. 
  4. [1] K. Doi and H. Naganuma, On the functional equation of certain Dirichlet series, Invent. Math. 9 (1969), 1-14. Zbl0182.54301
  5. [2] S. Kudla, Theta functions and Hilbert modular forms, Nagoya Math. J. 69 (1978), 97-106. Zbl0371.10021
  6. [3] S. Kudla, Relations between automorphic forms produced by theta-functions, in: Modular Functions of One Variable VI, Lecture Notes in Math. 627, Springer, 1977, 277-285. 
  7. [4] S. Niwa, Modular forms of half integral weight and the integral of certain theta-functions, Nagoya Math. J. 56 (1974), 147-161. Zbl0303.10027
  8. [5] M.-F.Vignéras, Séries thêta des formes quadratiques indéfinies, in: Modular Functions of One Variable VI, Lecture Notes in Math. 627, Springer, 1977, 227-239. 
  9. [6] D. Zagier, Modular forms associated to real quadratic fields, Invent. Math. 30 (1975), 1-46. Zbl0308.10014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.