Short intervals almost all containing primes

N. Watt

Acta Arithmetica (1995)

  • Volume: 72, Issue: 2, page 131-167
  • ISSN: 0065-1036

How to cite

top

N. Watt. "Short intervals almost all containing primes." Acta Arithmetica 72.2 (1995): 131-167. <http://eudml.org/doc/206789>.

@article{N1995,
author = {N. Watt},
journal = {Acta Arithmetica},
keywords = {primes; short interval; sieve method; mean value},
language = {eng},
number = {2},
pages = {131-167},
title = {Short intervals almost all containing primes},
url = {http://eudml.org/doc/206789},
volume = {72},
year = {1995},
}

TY - JOUR
AU - N. Watt
TI - Short intervals almost all containing primes
JO - Acta Arithmetica
PY - 1995
VL - 72
IS - 2
SP - 131
EP - 167
LA - eng
KW - primes; short interval; sieve method; mean value
UR - http://eudml.org/doc/206789
ER -

References

top
  1. [1] R. C. Baker and G. Harman, The difference between consecutive primes, preprint. Zbl0853.11076
  2. [2] A. Buchstab, Asymptotic estimates of a general number-theoretic function, Mat. Sb. (N.S.) (2) 44 (1937), 1239-1246 (in Russian with a German summary). 
  3. [3] H. Davenport, Multiplicative Number Theory, Springer, 1980. 
  4. [4] J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982), 219-288. 
  5. [5] J.-M. Deshouillers and H. Iwaniec, Power mean values of the Riemann zeta-function, Mathematika 29 (1982), 202-212. 
  6. [6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1954. Zbl0058.03301
  7. [7] G. Harman, Almost-primes in short intervals, Math. Ann. 258 (1981), 107-112. Zbl0474.10034
  8. [8] G. Harman, Primes in short intervals, Math. Z. 180 (1982), 335-348. Zbl0482.10040
  9. [9] G. Harman, On the distribution of αp modulo one, J. London Math. Soc. (2) 27 (1983), 9-18. Zbl0504.10018
  10. [10] G. Harman, On the distribution of αp modulo one II, preprint. 
  11. [11] D. R. Heath-Brown, Gaps between primes and the pair correlation of zeros of the zeta-function, Acta Arith. 41 (1982), 85-99. Zbl0414.10044
  12. [12] D. R. Heath-Brown, Finding primes by sieve methods, Proc. 1982 ICM, Warsaw, 1983, PWN, Vol. 1, Warszawa, 1984, 487-492. Zbl0565.10039
  13. [13] D. R. Heath-Brown and H. Iwaniec, On the difference between consecutive primes, Invent. Math. 55 (1979), 49-69. Zbl0424.10028
  14. [14] M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 164-170. Zbl0241.10026
  15. [15] H. Iwaniec, Rosser's sieve, Acta Arith. 36 (1980), 171-202. 
  16. [16] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320. Zbl0444.10038
  17. [17] H. Iwaniec and M. Jutila, Primes in short intervals, Ark. Mat. 17 (1979), 167-176. Zbl0408.10029
  18. [18] H. Iwaniec and J. Pintz, Primes in short intervals, Monatsh. Math. 98 (1984), 115-143. Zbl0544.10040
  19. [19] C. Jia, On the Goldbach numbers in the short interval, Science in China, to appear. 
  20. [20] C. Jia, On the difference between consecutive primes, Science in China,, to appear. 
  21. [21] H. Li, Primes in short intervals, unpublished manuscript. Zbl0875.11016
  22. [22] H. Li, Primes in short intervals, preprint. Zbl0875.11016
  23. [23] S. Lou and Q. Yao, A Chebychev's type of prime number theorem in a short interval - II, Hardy-Ramanujan J. 15 (1992), 1-33. Zbl0780.11039
  24. [24] H. Mikawa, Almost-primes in arithmetic progressions and short intervals, Tsukuba J. Math. (2) 13 (1989), 387-401. Zbl0689.10052
  25. [25] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, 1971. Zbl0216.03501
  26. [26] H. L. Montgomery and R. C. Vaughan, Hilbert's inequality, J. London Math. Soc. (2) 8 (1974), 73-82. Zbl0281.10021
  27. [27] H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach's problem, Acta Arith. 27 (1975), 353-370. Zbl0301.10043
  28. [28] Y. Motohashi, A note on almost-primes in short intervals, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), 225-226. Zbl0445.10032
  29. [29] C. J. Mozzochi, On the difference between consecutive primes, J. Number Theory 24 (1986), 181-187. 
  30. [30] A. Perelli and J. Pintz, On the exceptional set for Goldbach's Problem in short intervals, J. London Math. Soc. (2) 47 (1993), 41-49. Zbl0806.11042
  31. [31] A. Selberg, On the normal density of primes in short intervals, and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), 87-105. Zbl0063.06869
  32. [32] P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math. 313 (1980), 161-170. Zbl0412.10030
  33. [33] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1986. Zbl0601.10026
  34. [34] N. Watt, Kloosterman sums and a mean value for Dirichlet polynomials, J. Number Theory, to appear. Zbl0837.11050
  35. [35] D. Wolke, Fast-Primzahlen in kurzen Intervallen, Math. Ann. 224 (1979), 233-242 Zbl0402.10042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.