A common combinatorial principle underlies Riemann's formula, the Chebyshev phenomenon, and other subtle effects in comparative prime number theory. I.
Page 1 Next
Richard H. Hudson (1980)
Journal für die reine und angewandte Mathematik
R. Hall (1976)
Acta Arithmetica
Andrew Grant (1987)
Časopis pro pěstování matematiky
K. Matthews (1976)
Acta Arithmetica
Akshaa Vatwani (2018)
Czechoslovak Mathematical Journal
We develop an axiomatic formulation of the higher rank version of the classical Selberg sieve. This allows us to derive a simplified proof of the Zhang and Maynard-Tao result on bounded gaps between primes. We also apply the sieve to other subsequences of the primes and obtain bounded gaps in various settings.
E. Fogels (1972)
Acta Arithmetica
R. Odoni (1977)
Acta Arithmetica
Mohan NAIR (1980/1981)
Seminaire de Théorie des Nombres de Bordeaux
Stanisław Knapowski, W Staś (1962)
Acta Arithmetica
Cameron L. Stewart (1984/1985)
Groupe d'étude en théorie analytique des nombres
Martin Huxley (1980)
Acta Arithmetica
W. Narkiewicz (1973)
Colloquium Mathematicae
Danilo Bazzanella (2009)
Rendiconti del Seminario Matematico della Università di Padova
Saverio Salerno (1986)
Acta Arithmetica
Deniz A. Kaptan (2016)
Acta Arithmetica
We implement the Maynard-Tao method of detecting primes in tuples to investigate small gaps between primes in arithmetic progressions, with bounds that are uniform over a range of moduli.
D.R. Heath-Brown, D.A. Goldston (1984)
Mathematische Annalen
Akio Fujii (1979)
Journal für die reine und angewandte Mathematik
M. Wunderlich (1974)
Acta Arithmetica
I.C. Chakravartty (1970)
Aequationes mathematicae
I.C. Chakravartty (1970)
Aequationes mathematicae
Page 1 Next