A sieve approach to the Waring-Goldbach problem, II On the seven cubes theorem
Acta Arithmetica (1995)
- Volume: 72, Issue: 3, page 211-227
- ISSN: 0065-1036
Access Full Article
topHow to cite
topJörg Brüdern. "A sieve approach to the Waring-Goldbach problem, II On the seven cubes theorem." Acta Arithmetica 72.3 (1995): 211-227. <http://eudml.org/doc/206792>.
@article{JörgBrüdern1995,
author = {Jörg Brüdern},
journal = {Acta Arithmetica},
keywords = {number of representations; unrestricted Waring problem; circle method; weighted linear sieve},
language = {eng},
number = {3},
pages = {211-227},
title = {A sieve approach to the Waring-Goldbach problem, II On the seven cubes theorem},
url = {http://eudml.org/doc/206792},
volume = {72},
year = {1995},
}
TY - JOUR
AU - Jörg Brüdern
TI - A sieve approach to the Waring-Goldbach problem, II On the seven cubes theorem
JO - Acta Arithmetica
PY - 1995
VL - 72
IS - 3
SP - 211
EP - 227
LA - eng
KW - number of representations; unrestricted Waring problem; circle method; weighted linear sieve
UR - http://eudml.org/doc/206792
ER -
References
top- [1] J. Brüdern, On Waring's problem for fifth powers and some related topics, Proc. London Math. Soc. (3) 61 (1990), 457-479. Zbl0677.10036
- [2] J. Brüdern, Sieves, the circle method, and Waring's problem for cubes, Habilitationsschrift, Göttingen 1991; Mathematica Gottingensis 51 (1991).
- [3] J. Brüdern, A note on cubic exponential sums, in: Séminaire de Théorie des Nombres, Paris 1990-91, S. David (ed.), Progr. Math. 108, Birkhäuser, Basel, 1992, 23-34. Zbl0815.11040
- [4] J. Brüdern, A sieve approach to the Waring-Goldbach problem I: Sums of four cubes, Ann. Sci. École Norm. Sup. Paris, to appear. Zbl0839.11045
- [5] J. Brüdern and E. Fouvry, Lagrange's four squares theorem with almost prime variables, J. Reine Angew. Math. 454 (1994), 59-96. Zbl0809.11060
- [6] G. Greaves, A weighted sieve of Brun's type, Acta Arith. 40 (1981), 297-332. Zbl0412.10033
- [7] L. K. Hua, Some results in additive prime number theory, Quart. J. Math. Oxford 9 (1938), 68-80. Zbl0018.29404
- [8] L. K. Hua, Additive Theory of Prime Numbers, Providence, R. I., 1965. Zbl0192.39304
- [9] R. C. Vaughan, The Hardy-Littlewood Method, Cambridge University Press, 1981. Zbl0455.10034
- [10] R. C. Vaughan, Some remarks on Weyl sums, in: Topics in Classical Number Theory, Colloq. Math. Soc. János Bolyai 34, North-Holland, Amsterdam, 1984.
- [11] R. C. Vaughan, On Waring's problem for cubes, J. Reine Angew. Math. 365 (1986), 121-170. Zbl0574.10046
- [12] R. C. Vaughan, On Waring's problem for cubes II, J. London Math. Soc. (2) 39 (1989), 205-218. Zbl0677.10034
- [13] R. C. Vaughan, A new iterative method in Waring's problem, Acta Math. 162 (1989), 1-71. Zbl0665.10033
- [14] G. L. Watson, A proof of the seven cubes theorem, J. London Math. Soc. 26 (1951), 153-156. Zbl0042.04101
- [15] T. D. Wooley, Large improvements in Waring's problem, Ann. of Math. 135 (1992), 131-146 Zbl0754.11026
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.