A sieve approach to the Waring-Goldbach problem, II On the seven cubes theorem

Jörg Brüdern

Acta Arithmetica (1995)

  • Volume: 72, Issue: 3, page 211-227
  • ISSN: 0065-1036

How to cite

top

Jörg Brüdern. "A sieve approach to the Waring-Goldbach problem, II On the seven cubes theorem." Acta Arithmetica 72.3 (1995): 211-227. <http://eudml.org/doc/206792>.

@article{JörgBrüdern1995,
author = {Jörg Brüdern},
journal = {Acta Arithmetica},
keywords = {number of representations; unrestricted Waring problem; circle method; weighted linear sieve},
language = {eng},
number = {3},
pages = {211-227},
title = {A sieve approach to the Waring-Goldbach problem, II On the seven cubes theorem},
url = {http://eudml.org/doc/206792},
volume = {72},
year = {1995},
}

TY - JOUR
AU - Jörg Brüdern
TI - A sieve approach to the Waring-Goldbach problem, II On the seven cubes theorem
JO - Acta Arithmetica
PY - 1995
VL - 72
IS - 3
SP - 211
EP - 227
LA - eng
KW - number of representations; unrestricted Waring problem; circle method; weighted linear sieve
UR - http://eudml.org/doc/206792
ER -

References

top
  1. [1] J. Brüdern, On Waring's problem for fifth powers and some related topics, Proc. London Math. Soc. (3) 61 (1990), 457-479. Zbl0677.10036
  2. [2] J. Brüdern, Sieves, the circle method, and Waring's problem for cubes, Habilitationsschrift, Göttingen 1991; Mathematica Gottingensis 51 (1991). 
  3. [3] J. Brüdern, A note on cubic exponential sums, in: Séminaire de Théorie des Nombres, Paris 1990-91, S. David (ed.), Progr. Math. 108, Birkhäuser, Basel, 1992, 23-34. Zbl0815.11040
  4. [4] J. Brüdern, A sieve approach to the Waring-Goldbach problem I: Sums of four cubes, Ann. Sci. École Norm. Sup. Paris, to appear. Zbl0839.11045
  5. [5] J. Brüdern and E. Fouvry, Lagrange's four squares theorem with almost prime variables, J. Reine Angew. Math. 454 (1994), 59-96. Zbl0809.11060
  6. [6] G. Greaves, A weighted sieve of Brun's type, Acta Arith. 40 (1981), 297-332. Zbl0412.10033
  7. [7] L. K. Hua, Some results in additive prime number theory, Quart. J. Math. Oxford 9 (1938), 68-80. Zbl0018.29404
  8. [8] L. K. Hua, Additive Theory of Prime Numbers, Providence, R. I., 1965. Zbl0192.39304
  9. [9] R. C. Vaughan, The Hardy-Littlewood Method, Cambridge University Press, 1981. Zbl0455.10034
  10. [10] R. C. Vaughan, Some remarks on Weyl sums, in: Topics in Classical Number Theory, Colloq. Math. Soc. János Bolyai 34, North-Holland, Amsterdam, 1984. 
  11. [11] R. C. Vaughan, On Waring's problem for cubes, J. Reine Angew. Math. 365 (1986), 121-170. Zbl0574.10046
  12. [12] R. C. Vaughan, On Waring's problem for cubes II, J. London Math. Soc. (2) 39 (1989), 205-218. Zbl0677.10034
  13. [13] R. C. Vaughan, A new iterative method in Waring's problem, Acta Math. 162 (1989), 1-71. Zbl0665.10033
  14. [14] G. L. Watson, A proof of the seven cubes theorem, J. London Math. Soc. 26 (1951), 153-156. Zbl0042.04101
  15. [15] T. D. Wooley, Large improvements in Waring's problem, Ann. of Math. 135 (1992), 131-146 Zbl0754.11026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.