Theta series for indefinite quadratic forms over real number fields

Jeffrey Stopple

Acta Arithmetica (1995)

  • Volume: 72, Issue: 4, page 299-309
  • ISSN: 0065-1036

How to cite

top

Jeffrey Stopple. "Theta series for indefinite quadratic forms over real number fields." Acta Arithmetica 72.4 (1995): 299-309. <http://eudml.org/doc/206797>.

@article{JeffreyStopple1995,
author = {Jeffrey Stopple},
journal = {Acta Arithmetica},
keywords = {indefinite quadratic forms; real number fields; real quadratic extension of a totally real field; theta series; base change lifting of automorphic forms},
language = {eng},
number = {4},
pages = {299-309},
title = {Theta series for indefinite quadratic forms over real number fields},
url = {http://eudml.org/doc/206797},
volume = {72},
year = {1995},
}

TY - JOUR
AU - Jeffrey Stopple
TI - Theta series for indefinite quadratic forms over real number fields
JO - Acta Arithmetica
PY - 1995
VL - 72
IS - 4
SP - 299
EP - 309
LA - eng
KW - indefinite quadratic forms; real number fields; real quadratic extension of a totally real field; theta series; base change lifting of automorphic forms
UR - http://eudml.org/doc/206797
ER -

References

top
  1. [1] P. Appell et J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques (troisième partie: Polynomes d'Hermite...), Gauthier-Villars, Paris, 1926. Zbl52.0361.13
  2. [2] M. Eichler, On theta functions of real algebraic number fields, Acta Arith. 33 (1977), 269-292. Zbl0348.10017
  3. [3] N. Lebedev, Special Functions and their Applications, Dover, 1972. 
  4. [4] W. Schempp, Harmonic Analysis on the Heisenberg Nilpotent Lie Group, Longman, 1986. 
  5. [5] C. L. Siegel, Indefinite quadratische Formen und Funktionentheorie I, Math. Ann. 124 (1951), 17-54; II, Math. Ann. 124 (1951) 364-387. Zbl0043.27402
  6. [6] A. Terras, Harmonic Analysis on Symmetric Spaces and Applications I, Springer, 1985. 
  7. [7] M.-F. Vignéras, Séries thêta des formes quadratiques indéfinies, in: Modular Functions of One Variable VI, Lecture Notes in Math. 627, Springer, 1977, 227-239. 
  8. [8] L. H. Walling, Hecke operators on theta series attached to lattices of arbitrary rank, Acta Arith. 54 (1990), 213-240. Zbl0644.10023
  9. [9] D. Zagier, Modular forms associated to real quadratic fields, Invent. Math. 30 (1975), 1-46. Zbl0308.10014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.