Quadratic polynomials producing consecutive, distinct primes and class groups of complex quadratic fields

R. A. Mollin

Acta Arithmetica (1996)

  • Volume: 74, Issue: 1, page 17-30
  • ISSN: 0065-1036

How to cite

top

R. A. Mollin. "Quadratic polynomials producing consecutive, distinct primes and class groups of complex quadratic fields." Acta Arithmetica 74.1 (1996): 17-30. <http://eudml.org/doc/206833>.

@article{R1996,
author = {R. A. Mollin},
journal = {Acta Arithmetica},
keywords = {prime-producing quadratic polynomials; ideal class groups; complex quadratic fields},
language = {eng},
number = {1},
pages = {17-30},
title = {Quadratic polynomials producing consecutive, distinct primes and class groups of complex quadratic fields},
url = {http://eudml.org/doc/206833},
volume = {74},
year = {1996},
}

TY - JOUR
AU - R. A. Mollin
TI - Quadratic polynomials producing consecutive, distinct primes and class groups of complex quadratic fields
JO - Acta Arithmetica
PY - 1996
VL - 74
IS - 1
SP - 17
EP - 30
LA - eng
KW - prime-producing quadratic polynomials; ideal class groups; complex quadratic fields
UR - http://eudml.org/doc/206833
ER -

References

top
  1. [1] S. Arno, The imaginary quadratic fields of class number 4, Acta. Arith. 60 (1992), 321-334. Zbl0760.11033
  2. [2] A. Baker, Linear forms in the logarithms of algebraic numbers, Mathematika 13 (1966), 204-216. Zbl0161.05201
  3. [3] A. Baker, Imaginary quadratic fields with class number two, Ann. of Math. 94 (1971), 139-152. Zbl0219.12008
  4. [4] H. Cohn, A Second Course in Number Theory, Wiley, 1962. 
  5. [5] E. B. Escott, Réponses 1133 ``Formule d'Euler x²+x+41 et formules analogues'', L'intermédiaire des Math. 6 (1899), 10-11. 
  6. [6] L. Euler, Extrait d'une lettre de M. Euler le père à M. Bernoulli concernant le mémoire imprimé parmi ceux de 1771, p. 381, Nouveaux mémoirs de l'Académie des Sciences de Berlin 1772, (1774) Histoire, 35-36; Opera Omnia, I₃, Commentationes Arithmeticae, II, Teubner, Lipsiae et Berolini, 1917, 335-337. 
  7. [7] F. G. Frobenius, Über quadratische Formen die viele Primzahlen darstellen, Sitzungsber. Kgl. Preuss. Akad. Wiss. Berlin 1912, 966-980. 
  8. [8] K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227-253. 
  9. [9] A. M. Legendre, Théorie des nombres, Libraire Scientifique A. Hermann, Paris, 1798, 69-76; 2nd ed., 1808, 61-67; 3rd ed., 1830, 72-80. 
  10. [10] D. H. Lehmer, On the function x²+x+A, Sphinx 6 (1936), 212-214. 
  11. [11] A. Lévy, Sur les nombres premiers dérivés de trinomes du second degré, Sphinx-Oedipe 9 (1914), 6-7. 
  12. [12] S. Louboutin, R. A. Mollin and H. C. Williams, Class groups of exponent two in real quadratic fields, in: Advances in Number Theory, F. Q. Gouvéa and N. Yui (eds.) in consultation with A. Granville, R. Gupta, E. Kani, H. Kisilevsky, R. A. Mollin, and C. Stewart, Clarendon Press, Oxford, 1993, 499-513. Zbl0795.11057
  13. [13] R. A. Mollin, Quadratics, C.R.C. Press, Florida, 1995; to appear. 
  14. [14] R. A. Mollin, Orders in quadratic fields I, Proc. Japan Acad. Ser. A 69 (1993), 45-48. Zbl0795.11056
  15. [15] R. A. Mollin, Orders in quadratic fields III, Proc. Japan Acad. Ser. A 70 (1994), 176-181. Zbl0809.11064
  16. [16] R. A. Mollin and H. C. Williams, Prime-producing quadratic polynomials and real quadratic fields of class number one, in: Number Theory, J. M. De Koninck and C. Levesque (eds.), de Gruyter, Berlin, 1989, 654-663. Zbl0695.12002
  17. [17] G. Rabinowitsch, Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern, in: Proc. Fifth Internat. Congress Math., Cambridge, I, 1913, 418-421. Zbl44.0244.01
  18. [18] G. Rabinowitsch, Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern, J. Reine Angew. Math. 142 (1913), 153-164. Zbl44.0243.03
  19. [19] P. Ribenboim, Euler's famous prime generating polynomial and class numbers of imaginary quadratic fields, Enseign. Math. 34 (1988), 23-42. Zbl0663.12003
  20. [20] R. Sasaki, On a lower bound for the class numbers of an imaginary quadratic field, Proc. Japan Acad. Ser. A 62 (1986), 37-39. Zbl0591.12008
  21. [21] W. Sierpiński, Elementary Theory of Numbers, Polish Scientific Publ., Warszawa, 1964. Zbl0122.04402
  22. [22] H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1-27. 
  23. [23] H. M. Stark, A transcendence theorem for class number problems, Ann. of Math. 94 (1971), 153-173. Zbl0229.12010
  24. [24] B. Van der Pol and P. Speziali, The primes in k(ζ), Indag. Math. 13 (1951), 9-15. Zbl0045.01303
  25. [25] P. J. Weinberger, Exponents of the class groups of complex quadratic fields, Acta Arith. 22 (1973), 117-124. Zbl0217.04202

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.