The imaginary quadratic fields of class number 4
Acta Arithmetica (1992)
- Volume: 60, Issue: 4, page 321-334
- ISSN: 0065-1036
Access Full Article
topHow to cite
topSteven Arno. "The imaginary quadratic fields of class number 4." Acta Arithmetica 60.4 (1992): 321-334. <http://eudml.org/doc/206441>.
@article{StevenArno1992,
author = {Steven Arno},
journal = {Acta Arithmetica},
keywords = {imaginary quadratic fields; class number 4; sum of three squares},
language = {eng},
number = {4},
pages = {321-334},
title = {The imaginary quadratic fields of class number 4},
url = {http://eudml.org/doc/206441},
volume = {60},
year = {1992},
}
TY - JOUR
AU - Steven Arno
TI - The imaginary quadratic fields of class number 4
JO - Acta Arithmetica
PY - 1992
VL - 60
IS - 4
SP - 321
EP - 334
LA - eng
KW - imaginary quadratic fields; class number 4; sum of three squares
UR - http://eudml.org/doc/206441
ER -
References
top- [1] N. C. Ankeny, The least quadratic non residue, Ann. of Math. (2) 55 (1952), 65-72. Zbl0046.04006
- [2] A. Baker, A remark on the class number of quadratic fields, Bull. London Math. Soc. 1 (1966), 98-102.
- [3] A. Baker, Imaginary quadratic fields of class number 2, Ann. of Math. 94 (1971), 139-152.
- [4] P. T. Bateman and E. Grosswald, Positive integers expressible as a sum of 3 squares in essentially only one way, J. Number Theory 19 (1984), 301-308. Zbl0558.10038
- [5] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York 1966.
- [6] D. A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp. 31 (1977), 786-796. Zbl0379.12001
- [7] P. Chowla and A. Selberg, On Epstein's zeta function, J. Reine Angew. Math. 227 (1967), 86-110. Zbl0166.05204
- [8] H. Davenport, Multiplicative Number Theory, 2nd ed., Graduate Texts in Math. 74, Springer, New York 1980. Zbl0453.10002
- [9] C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function, Royal Society Math. Tables, Vol. 6, Cambridge 1960. Zbl0095.12001
- [10] H. Heilbronn, On the class number in imaginary quadratic fields, Quart. J. Math. Oxford Ser. 25 (1934), 150-160. Zbl0009.29602
- [11] C. F. Gauss, Disquisitiones Arithmeticae, Yale Univ. Press, 1966.
- [12] D. M. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa (4) 3 (1976), 623-663. Zbl0345.12007
- [13] B. Gross et D. Zagier, Points de Heegner et derivées de fonctions L, C. R. Acad. Sci. Paris 297 (1983), 85-87.
- [14] D. H. Lehmer, E. Lehmer, and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp. 24 (1970), 433-451. Zbl0203.35301
- [15] H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, Acta Arith. 24 (1974), 529-542. Zbl0285.12004
- [16] L. J. Mordell, On the rational solutions of the indeterminate equations of the 3rd and 4rth degrees, Proc. Cambridge Philos. Soc. 21 (1922), 179-192.
- [17] J. Oesterlé, Nombres de classes des corps quadratiques imaginaires, Sém. Bourbaki, 1983-1984, exp. 631.
- [18] H. M. Stark, A complete determination of the complex quadratic fields of class number 1, Michigan Math. J. 14 (1967), 1-27. Zbl0148.27802
- [19] H. M. Stark, On complex quadratic fields with class number two, Math. Comp. 29 (1975), 289-302. Zbl0321.12009
- [20] H. M. Stark, L-functions and character sums for quadratic forms (II), Acta Arith. 15 (1969), 307-317.
- [21] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford Univ. Press, London 1951. Zbl0042.07901
Citations in EuDML Documents
top- R. A. Mollin, Quadratic polynomials producing consecutive, distinct primes and class groups of complex quadratic fields
- Ku-Young Chang, Soun-Hi Kwon, The imaginary abelian number fields with class numbers equal to their genus class numbers
- Steven Arno, M. L. Robinson, Ferrell S. Wheeler, Imaginary quadratic fields with small odd class number
- Young-Ho Park, Soun-Hi Kwon, Determination of all imaginary abelian sextic number fields with class number ≤ 11
- Joseph B. Muskat, Blair K. Spearman, Kenneth S. Williams, Predictive criteria for the representation of primes by binary quadratic forms
- Ken Yamamura, Maximal unramified extensions of imaginary quadratic number fields of small conductors
- Ken Yamamura, Determination of the imaginary normal octic number fields with class number one which are not CM-fields
- Ryotaro Okazaki, Inclusion of CM-fields and divisibility ofrelative class numbers
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.