The Dirichlet series of ζ ( s ) ζ α ( s + 1 ) f ( s + 1 ) : On an error term associated with its coefficients

U. Balakrishnan; Y.-F. S. Pétermann

Acta Arithmetica (1996)

  • Volume: 75, Issue: 1, page 39-69
  • ISSN: 0065-1036

How to cite

top

U. Balakrishnan, and Y.-F. S. Pétermann. "The Dirichlet series of $ζ(s)ζ^α(s+1)f(s+1)$: On an error term associated with its coefficients." Acta Arithmetica 75.1 (1996): 39-69. <http://eudml.org/doc/206862>.

@article{U1996,
author = {U. Balakrishnan, Y.-F. S. Pétermann},
journal = {Acta Arithmetica},
keywords = {-function; Euler function; asymptotic formula; error term},
language = {eng},
number = {1},
pages = {39-69},
title = {The Dirichlet series of $ζ(s)ζ^α(s+1)f(s+1)$: On an error term associated with its coefficients},
url = {http://eudml.org/doc/206862},
volume = {75},
year = {1996},
}

TY - JOUR
AU - U. Balakrishnan
AU - Y.-F. S. Pétermann
TI - The Dirichlet series of $ζ(s)ζ^α(s+1)f(s+1)$: On an error term associated with its coefficients
JO - Acta Arithmetica
PY - 1996
VL - 75
IS - 1
SP - 39
EP - 69
LA - eng
KW - -function; Euler function; asymptotic formula; error term
UR - http://eudml.org/doc/206862
ER -

References

top
  1. [1] U. Balakrishnan, On the sum of divisors function, J. Number Theory 51 (1995), 147-168. Zbl0823.11052
  2. [2] S. D. Chowla, An order result involving Euler's ϕ-function, J. Indian Math. Soc. 18 (1929/30), 138-141. Zbl55.0106.03
  3. [3] P. Codecà, On the properties of oscillations and almost periodicity of certain convolutions, Rend. Sem. Mat. Univ. Padova 71 (1984), 373-387. Zbl0552.10030
  4. [4] P. J. G. L. Dirichlet, Ueber die Bestimmung der mittleren Werthe in der Zahlentheorie, Abh. Kön. Preuss. Akad. (1849), 69-83; Also in: Werke, II, Berlin, 1897, 51-66. 
  5. [5] P. Erdős and H. N. Shapiro, On the changes of sign of a certain error function, Canad. J. Math. 3 (1951), 375-385. Zbl0044.03903
  6. [6] I. I. Il’yasov, Estimate of the remainder term of the sum n x ( ϕ ( n ) / n ) α , Izv. Akad. Nauk Kazakh. SSR Ser. Fiz.-Mat. 1969 (3), 77-79 (in Russian). 
  7. [7] A. Ivić, The Riemann Zeta-function, Wiley, 1985. Zbl0556.10026
  8. [8] E. Landau, Ueber die zahlentheoretische Funktion ϕ(n) und ihre Beziehung zur Goldbachschen Satz, Gött. Nachr. (1900), 177-186. 
  9. [9] H. L. Montgomery, Fluctuations in the mean of Euler's phi function, Proc. Indian Acad. Sci. Math. Sci. 97 (1987), 239-245. Zbl0656.10042
  10. [10] Y.-F. S. Pétermann, An Ω-theorem for an error term related to the sum-of-divisors function, Monatsh. Math. 103 (1987), 145-157; Addendum, Proc. Indian Acad. Sci. Math. Sci. 104 (1988), 193-194. 
  11. [11] Y.-F. S. Pétermann, About a theorem of Paolo Codecà's and Ω-estimates for arithmetical convolutions, J. Number Theory 30 (1988), 71-85; Addendum, J. Number Theory 36 (1990), 322-327. Zbl0649.10034
  12. [12] H. Rademacher, Topics in Analytic Number Theory, Grundlehren Math. Wiss. 169, Springer, New York, 1973. Zbl0253.10002
  13. [13] S. Ramanujan, Some formulae in the theory of numbers, Mess. Math. 45 (1916), 81-84; also in: Collected Papers, Cambridge University Press, 1927. 
  14. [14] V. Schemmel, Ueber relative Primzahlen, J. Reine Angew. Math. 70 (1869), 191-192. 
  15. [15] R. Sitaramachandrarao, On an error term of Landau, Indian J. Pure Appl. Math. 13 (1982), 882-885. Zbl0494.10033
  16. [16] A. Sivaramasarma, Some problems in the theory of Farey series and the Euler totient function, Doctoral thesis (Chapter 8), Waltair, 1979. 
  17. [17] R. A. Smith, An error term of Ramanujan, J. Number Theory 2 (1970), 91-96. Zbl0188.10401
  18. [18] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Institut Elie Cartan 13, 1990. 
  19. [19] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Deutsch. Verlag der Wiss., Berlin, 1963. Zbl0146.06003
  20. [20] S. Wigert, Sur quelques fonctions arithmétiques, Acta Math. 37 (1914), 113-140. Zbl45.0328.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.