Arithmetic progressions of length three in subsets of a random set

Yoshiharu Kohayakawa; Tomasz Łuczak; Vojtěch Rödl

Acta Arithmetica (1996)

  • Volume: 75, Issue: 2, page 133-163
  • ISSN: 0065-1036

How to cite

top

Yoshiharu Kohayakawa, Tomasz Łuczak, and Vojtěch Rödl. "Arithmetic progressions of length three in subsets of a random set." Acta Arithmetica 75.2 (1996): 133-163. <http://eudml.org/doc/206867>.

@article{YoshiharuKohayakawa1996,
author = {Yoshiharu Kohayakawa, Tomasz Łuczak, Vojtěch Rödl},
journal = {Acta Arithmetica},
keywords = {Szemerédi's theorem; arithmetic progressions; combinatorial number theory; regularity lemma; random sets of integers; three term arithmetic progression; Szemeredi regularity lemma},
language = {eng},
number = {2},
pages = {133-163},
title = {Arithmetic progressions of length three in subsets of a random set},
url = {http://eudml.org/doc/206867},
volume = {75},
year = {1996},
}

TY - JOUR
AU - Yoshiharu Kohayakawa
AU - Tomasz Łuczak
AU - Vojtěch Rödl
TI - Arithmetic progressions of length three in subsets of a random set
JO - Acta Arithmetica
PY - 1996
VL - 75
IS - 2
SP - 133
EP - 163
LA - eng
KW - Szemerédi's theorem; arithmetic progressions; combinatorial number theory; regularity lemma; random sets of integers; three term arithmetic progression; Szemeredi regularity lemma
UR - http://eudml.org/doc/206867
ER -

References

top
  1. [ADLRY 94] N. Alon, R. A. Duke, H. Lefmann, V. Rödl and R. Yuster, The algorithmic aspects of the regularity lemma, J. Algorithms 16 (1994), 80-109. Zbl0794.05119
  2. [EFR 86] P. Erdős, P. Frankl and V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs Combin. 2 (1986), 113-121. Zbl0593.05038
  3. [ET 36] P. Erdős and P. Turán, On some sequences of integers, J. London Math. Soc. 11 (1936), 261-264. Zbl62.1126.01
  4. [FRW 88] P. Frankl, V. Rödl and R. Wilson, The number of submatrices of a given type in a Hadamard matrix and related results, J. Combin. Theory Ser. B 44 (1988), 317-328. Zbl0658.05015
  5. [Fu 77] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math. 31 (1977), 204-256. Zbl0347.28016
  6. [GN 86] R. L. Graham and J. Nešetřil, Large minimal sets which force long arithmetic progressions, J. Combin. Theory Ser. A 42 (1986), 270-276. Zbl0604.05003
  7. [GR 87] R. L. Graham and V. Rödl, Numbers in Ramsey theory, in: Surveys in Combinatorics 1987, C. Whitehead (ed.), London Math. Soc. Lecture Note Ser. 123, Cambridge University Press, Cambridge, 1987, 111-153. 
  8. [HKŁ 95] P. E. Haxell, Y. Kohayakawa and T. Łuczak, The induced size-Ramsey number of cycles, Combin. Probab. Comput. 4 (1995), 217-239. Zbl0839.05073
  9. [H-B 87] D. R. Heath-Brown, Integer sets containing no arithmetic progressions, J. London Math. Soc. 35 (1987), 385-394. Zbl0589.10062
  10. [JŁR 90] S. Janson, T. Łuczak and A. Ruciński, An exponential bound for the probability of nonexistence of a specified subgraph in a random graph, in: Random Graphs '87, M. Karoński, J. Jaworski and A. Ruciński (eds.), Wiley, 1990, 73-87. Zbl0733.05073
  11. [McD 89] C. J. H. McDiarmid, On the method of bounded differences, in: Surveys in Combinatorics 1989, J. Siemons (ed.), London Math. Soc. Lecture Note Ser. 141, Cambridge University Press, Cambridge, 1989, 148-188. 
  12. [NR 87] J. Nešetřil and V. Rödl, Partite construction and Ramseyan theorems for sets, numbers and spaces, Comment. Math. Univ. Carolin. 28 (1987), 569-580. Zbl0629.05048
  13. [PV 88] H.-J. Prömel and B. Voigt, A sparse Graham-Rothschild theorem, Trans. Amer. Math. Soc. 309 (1988), 113-137. Zbl0662.05006
  14. [Rö 90] V. Rödl, On Ramsey families of sets, Graphs Combin. 6 (1990), 187-195. Zbl0705.05052
  15. [Ro 53] K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104-109. Zbl0050.04002
  16. [RSz 78] I. Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, Colloq. Math. Soc. János Bolyai 18 (1978), 939-945. Zbl0393.05031
  17. [Sp 75] J. Spencer, Restricted Ramsey configurations, J. Combin. Theory Ser. A 19 (1975), 278-286. Zbl0316.05003
  18. [Sz 75] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 299-345. 
  19. [Sz 78] E. Szemerédi, Regular partitions of graphs, in: Problèmes Combinatoires et Théorie des Graphes, Proc. Colloque Inter. CNRS, J.-C. Bermond, J.-C. Fournier, M. Las Vergnas et D. Sotteau (eds.), CNRS, Paris, 1978, 399-401. Zbl0413.05055
  20. [Th 87a] A. Thomason, Pseudo-random graphs, in: Random Graphs '85, M. Karoński and Z. Palka (eds.), Ann. Discrete Math. 33, North-Holland, Amsterdam, 1987, 307-331. 
  21. [Th 87b] A. Thomason, Random graphs, strongly regular graphs and pseudo-random graphs, in: Surveys in Combinatorics 1987, C. Whitehead (ed.), London Math. Soc. Lecture Note Ser. 123, Cambridge University Press, Cambridge, 1987, 173-195. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.