On large Picard groups and the Hasse Principle for curves and K3 surfaces

Daniel Coray; Constantin Manoil

Acta Arithmetica (1996)

  • Volume: 76, Issue: 2, page 165-189
  • ISSN: 0065-1036

How to cite

top

Daniel Coray, and Constantin Manoil. "On large Picard groups and the Hasse Principle for curves and K3 surfaces." Acta Arithmetica 76.2 (1996): 165-189. <http://eudml.org/doc/206893>.

@article{DanielCoray1996,
author = {Daniel Coray, Constantin Manoil},
journal = {Acta Arithmetica},
keywords = {large Picard groups; counterexamples to the Hasse principle for curves; K3 surfaces},
language = {eng},
number = {2},
pages = {165-189},
title = {On large Picard groups and the Hasse Principle for curves and K3 surfaces},
url = {http://eudml.org/doc/206893},
volume = {76},
year = {1996},
}

TY - JOUR
AU - Daniel Coray
AU - Constantin Manoil
TI - On large Picard groups and the Hasse Principle for curves and K3 surfaces
JO - Acta Arithmetica
PY - 1996
VL - 76
IS - 2
SP - 165
EP - 189
LA - eng
KW - large Picard groups; counterexamples to the Hasse principle for curves; K3 surfaces
UR - http://eudml.org/doc/206893
ER -

References

top
  1. [1] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves, I, J. Reine Angew. Math. 212 (1962), 7-25. Zbl0118.27601
  2. [2] A. Bremner, Algebraic points on quartic curves over function fields, Glasgow Math. J. 26 (1985), 187-190. Zbl0581.14015
  3. [3] A. Bremner, D. J. Lewis and P. Morton, Some varieties with points only in a field extension, Arch. Math. 43 (1984), 344-350. Zbl0532.14011
  4. [4] A. Brumer, Remarques sur les couples de formes quadratiques, C. R. Acad. Sci. Paris A 286 (1978), 679-681. Zbl0392.10021
  5. [5] J. W. S. Cassels, The arithmetic of certain quartic curves, Proc. Roy. Soc. Edinburgh 100 (1985), 201-218. Zbl0589.14029
  6. [6] J. W. S. Cassels, Local Fields, Cambridge Univ. Press, Cambridge, 1986. 
  7. [7] J. W. S. Cassels and A. Fröhlich (ed.), Algebraic Number Theory, Academic Press, London, 1967. 
  8. [8] J. W. S. Cassels and M. J. T. Guy, On the Hasse principle for cubic surfaces, Mathematika 13 (1966), 111-120. Zbl0151.03405
  9. [9] F. Châtelet, Variations sur un thème de Poincaré, Ann. Ecole Norm. Sup. 61 (1944), 249-300. Zbl0063.00801
  10. [10] J.-L. Colliot-Thélène, Les grands thèmes de François Châtelet, Enseign. Math. 34 (1988), 387-405. Zbl0678.01008
  11. [11] J.-L. Colliot-Thélène, D. Coray et J.-J. Sansuc, Descente et principe de Hasse pour certaines variétés rationnelles, J. Reine Angew. Math. 320 (1980), 150-191. Zbl0434.14019
  12. [12] J.-L. Colliot-Thélène et J.-J. Sansuc, La descente sur les variétés rationnelles, II, Duke Math. J. 54 (1987), 375-492. Zbl0659.14028
  13. [13] J.-L. Colliot-Thélène, J.-J. Sansuc and Sir P. Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces, J. Reine Angew. Math. 373 (1987), 37-107; 374 (1987), 72-168. 
  14. [14] J.-L. Colliot-Thélène et A. N. Skorobogatov, Groupe de Chow des zéro-cycles sur les fibrés en quadriques, K-Theory 7 (1993), 477-500. Zbl0837.14002
  15. [15] J.-L. Colliot-Thélène and Sir P. Swinnerton-Dyer, Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties, J. Reine Angew. Math. 453 (1994), 49-112. Zbl0805.14010
  16. [16] D. Coray, Arithmetic on cubic surfaces, Ph.D. thesis, Trinity College, Cambridge, 1974, 66 pp. Zbl0337.14028
  17. [17] D. Coray, Algebraic points on cubic hypersurfaces, Acta Arith. 30 (1976), 267-296. Zbl0294.14012
  18. [18] D. Coray, On a problem of Pfister about intersections of three quadrics, Arch. Math. 34 (1980), 403-411. Zbl0426.14008
  19. [19] D. Coray, A remark on systems of quadratic forms, in: Math. Forschungsinstitut Oberwolfach, Tagungsbericht 22/1981: Quadratische Formen, 18.5-23.5.1981, 8-9. 
  20. [20] D. Coray and M. A. Tsfasman, Arithmetic on singular Del Pezzo surfaces, Proc. London Math. Soc. 57 (1988), 25-87. Zbl0653.14018
  21. [21] P. Deligne, Les conjectures de Weil, I, Publ. Math. I.H.E.S. 43 (1974), 273-307. 
  22. [22] W. Fulton, Intersection Theory, Springer, Berlin, 1984. Zbl0541.14005
  23. [23] A. Grothendieck, Le groupe de Brauer, III, Exemples et compléments, in: Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968. 
  24. [24] R. Hartshorne, Algebraic Geometry, Springer, New York, 1977. 
  25. [25] D. Husemöller, Elliptic Curves, Springer, New York, 1987. 
  26. [26] D. Kanevsky, Application of the conjecture on the Manin obstruction to various diophantine problems, Journées Arithmétiques de Besançon, Astérisque 147-148 (1987), 307-314. Zbl0625.14010
  27. [27] B. È. Kunyavskiĭ, A. N. Skorobogatov and M. A. Tsfasman, Del Pezzo surfaces of degree four, Suppl. Bull. Soc. Math. France 117 (2) (1989), Mémoire no. 37, 112 pp. Zbl0705.14039
  28. [28] S. Lang and A. Weil, Number of points of varieties in finite fields, Amer. J. Math. 76 (1954), 819-827. Zbl0058.27202
  29. [29] S. Lichtenbaum, Duality theorems for curves over p-adic fields, Invent. Math. 7 (1969), 120-136. Zbl0186.26402
  30. [30] Yu. I. Manin, Cubic Forms, Nauka, Moscow, 1972 (in Russian); English transl.: North-Holland, Amsterdam, 1980. 
  31. [31] C. Manoil, Courbes sur une surface K3, thèse, Univ. Genève, 1992, 107 pp. 
  32. [32] A. S. Merkurjev and J.-P. Tignol, The multipliers of similitudes and the Brauer group of homogeneous varieties, preprint, Univ. Cath. Louvain, 1994, 30 pp. Zbl0819.16015
  33. [33] J. S. Milne, Étale Cohomology, Princeton Univ. Press, Princeton, N.J., 1980. 
  34. [34] L. J. Mordell, Diophantine Equations, Academic Press, London, 1969. 
  35. [35] D. Mumford, Lectures on Curves on an Algebraic Surface, Princeton Univ. Press, Princeton, N.J., 1966. Zbl0187.42701
  36. [36] P. Samuel, Anneaux factoriels, Inst. Pesq. Mat., Univ. S ao Paulo, 1963. Zbl0123.03303
  37. [37] P. Samuel, About Euclidean rings, J. Algebra 19 (1971), 282-301. Zbl0223.13019
  38. [38] J.-P. Serre, Corps locaux, Hermann, Paris, 1962. 
  39. [39] J.-P. Serre, Cours d'arithmétique, Presses Univ. France, Paris, 1970. 
  40. [40] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986. Zbl0585.14026
  41. [41] T. A. Springer, Sur les formes quadratiques d'indice zéro, C. R. Acad. Sci. Paris 234 (1952), 1517-1519. Zbl0046.24303
  42. [42] T. A. Springer, Quadratic forms over fields with a discrete valuation, Indag. Math. 17 (1955), 352-362. 
  43. [43] V. E. Voskresenskiĭ, Algebraic Tori, Nauka, Moscow, 1977 (in Russian). 
  44. [44] E. Witt, Über ein Gegenbeispiel zum Normensatz, Math. Z. 39 (1935), 462-467. Zbl0010.14901

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.