The arithmetic of certain del Pezzo surfaces and K3 surfaces

Dong Quan Ngoc Nguyen[1]

  • [1] Department of Mathematics The University of Arizona, 617 N. Santa Rita Ave, Tucson, Arizona 85721, USA

Journal de Théorie des Nombres de Bordeaux (2012)

  • Volume: 24, Issue: 2, page 447-460
  • ISSN: 1246-7405

Abstract

top
We construct del Pezzo surfaces of degree 4 violating the Hasse principle explained by the Brauer-Manin obstruction. Using these del Pezzo surfaces, we show that there are algebraic families of K 3 surfaces violating the Hasse principle explained by the Brauer-Manin obstruction. Various examples are given.

How to cite

top

Nguyen, Dong Quan Ngoc. "The arithmetic of certain del Pezzo surfaces and K3 surfaces." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 447-460. <http://eudml.org/doc/251067>.

@article{Nguyen2012,
abstract = {We construct del Pezzo surfaces of degree $4$ violating the Hasse principle explained by the Brauer-Manin obstruction. Using these del Pezzo surfaces, we show that there are algebraic families of $K3$ surfaces violating the Hasse principle explained by the Brauer-Manin obstruction. Various examples are given.},
affiliation = {Department of Mathematics The University of Arizona, 617 N. Santa Rita Ave, Tucson, Arizona 85721, USA},
author = {Nguyen, Dong Quan Ngoc},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Hasse principle; degree 4 del Pezzo surfaces; surfaces; Brauer-Manin obstruction},
language = {eng},
month = {6},
number = {2},
pages = {447-460},
publisher = {Société Arithmétique de Bordeaux},
title = {The arithmetic of certain del Pezzo surfaces and K3 surfaces},
url = {http://eudml.org/doc/251067},
volume = {24},
year = {2012},
}

TY - JOUR
AU - Nguyen, Dong Quan Ngoc
TI - The arithmetic of certain del Pezzo surfaces and K3 surfaces
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 447
EP - 460
AB - We construct del Pezzo surfaces of degree $4$ violating the Hasse principle explained by the Brauer-Manin obstruction. Using these del Pezzo surfaces, we show that there are algebraic families of $K3$ surfaces violating the Hasse principle explained by the Brauer-Manin obstruction. Various examples are given.
LA - eng
KW - Hasse principle; degree 4 del Pezzo surfaces; surfaces; Brauer-Manin obstruction
UR - http://eudml.org/doc/251067
ER -

References

top
  1. B.J. Birch and H.P.F. Swinnerton-Dyer, The Hasse problem for rational surfaces. J. Reine Angew. Math. 274/275 (1975), 164–174, Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, III. Zbl0326.14007MR429913
  2. V. Bouniakowsky, Nouveaux théorèms à la distinction des nombres premiers et à la décomposition des entiers en facteurs. Sc. Math. Phys. 6 (1857), pp. 305–329. 
  3. H. Cohen, Number Theory, Volume I: Tools and Diophantine equations. Graduate Texts in Math. 239, Springer-Verlag, 2007. MR2312337
  4. J-L. Colliot-Thélène and B. Poonen, Algebraic families of nonzero elements of Shafarevich-Tate groups. J. Amer. Math. Soc. 13 (2000), no. 1, 83–99. Zbl0951.11022MR1697093
  5. P. Corn, Del Pezzo surfaces and the Brauer-Manin obstruction. Ph.D. thesis, University of California, Berkeley, 2005. Zbl1133.14022MR2707740
  6. D. F. Coray and C. Manoil, On large Picard groups and the Hasse principle for curves and K 3 surfaces. Acta. Arith. 76 (1996), pp. 165–189. Zbl0877.14005MR1393513
  7. W. Hürlimann, Brauer group and Diophantine geometry: A cohomological approach, in: Brauer Groups in Ring Theory and Algebraic Geometry, Wilrijk, 1981. In: Lecture Notes in Math., vol. 917, Springer, Berlin, 1982, pp. 43–65. Zbl0487.14006MR657422
  8. V.A. Iskovskikh, A counterexample to the Hasse principle for systems of two quadratic forms in five variables. Mat. Zametki 10 (1971), 253–257. Zbl0221.10028MR286743
  9. C.E. Lind, Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins. Thesis, University of Uppasala, 1940. Zbl0025.24802MR22563
  10. Yu.I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne. In Actes du Congrès International des Mathématiciens, (Nice, 1970), pp. 401–411. Zbl0239.14010MR427322
  11. B. Poonen, An explicit family of genus-one curves violating the Hasse principle. J. Théor. Nombres Bordeaux 13 (2001), no. 1, 263–274. Zbl1046.11038MR1838086
  12. B. Poonen, Existence of rational points on smooth projective varieties. J. Eur. Math. Soc. 11 (2009), no. 3, pp. 529–543. Zbl1183.14032MR2505440
  13. H. Reichardt, Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen. J. Reine Angew. Math. 184 (1942), pp. 12–18. Zbl68.0070.01MR9381
  14. M. Reid, The complete intersection of two or more quadrics. Ph.D thesis, University of Cambridge, 1972. 
  15. A.N. Skorobogatov, Torsors and rational points, CTM 144. Cambridge Univ. Press, 2001. Zbl0972.14015MR1845760
  16. H.P.F. Swinnerton-Dyer, Brauer-Manin obstructions on some Del Pezzo surfaces. Math. Proc. Cam. Phil. Soc. 125 (1999), pp. 193–198. Zbl0951.14010MR1643855
  17. Oliver Wittenberg, Intersections de deux quadriques et pinceaux de courbes de genre 1 . Lecture Notes in Mathematics. 1901, Springer, Berlin, 2007. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.