The arithmetic of certain del Pezzo surfaces and K3 surfaces
- [1] Department of Mathematics The University of Arizona, 617 N. Santa Rita Ave, Tucson, Arizona 85721, USA
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 2, page 447-460
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topNguyen, Dong Quan Ngoc. "The arithmetic of certain del Pezzo surfaces and K3 surfaces." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 447-460. <http://eudml.org/doc/251067>.
@article{Nguyen2012,
abstract = {We construct del Pezzo surfaces of degree $4$ violating the Hasse principle explained by the Brauer-Manin obstruction. Using these del Pezzo surfaces, we show that there are algebraic families of $K3$ surfaces violating the Hasse principle explained by the Brauer-Manin obstruction. Various examples are given.},
affiliation = {Department of Mathematics The University of Arizona, 617 N. Santa Rita Ave, Tucson, Arizona 85721, USA},
author = {Nguyen, Dong Quan Ngoc},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Hasse principle; degree 4 del Pezzo surfaces; surfaces; Brauer-Manin obstruction},
language = {eng},
month = {6},
number = {2},
pages = {447-460},
publisher = {Société Arithmétique de Bordeaux},
title = {The arithmetic of certain del Pezzo surfaces and K3 surfaces},
url = {http://eudml.org/doc/251067},
volume = {24},
year = {2012},
}
TY - JOUR
AU - Nguyen, Dong Quan Ngoc
TI - The arithmetic of certain del Pezzo surfaces and K3 surfaces
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 447
EP - 460
AB - We construct del Pezzo surfaces of degree $4$ violating the Hasse principle explained by the Brauer-Manin obstruction. Using these del Pezzo surfaces, we show that there are algebraic families of $K3$ surfaces violating the Hasse principle explained by the Brauer-Manin obstruction. Various examples are given.
LA - eng
KW - Hasse principle; degree 4 del Pezzo surfaces; surfaces; Brauer-Manin obstruction
UR - http://eudml.org/doc/251067
ER -
References
top- B.J. Birch and H.P.F. Swinnerton-Dyer, The Hasse problem for rational surfaces. J. Reine Angew. Math. 274/275 (1975), 164–174, Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, III. Zbl0326.14007MR429913
- V. Bouniakowsky, Nouveaux théorèms à la distinction des nombres premiers et à la décomposition des entiers en facteurs. Sc. Math. Phys. 6 (1857), pp. 305–329.
- H. Cohen, Number Theory, Volume I: Tools and Diophantine equations. Graduate Texts in Math. 239, Springer-Verlag, 2007. MR2312337
- J-L. Colliot-Thélène and B. Poonen, Algebraic families of nonzero elements of Shafarevich-Tate groups. J. Amer. Math. Soc. 13 (2000), no. 1, 83–99. Zbl0951.11022MR1697093
- P. Corn, Del Pezzo surfaces and the Brauer-Manin obstruction. Ph.D. thesis, University of California, Berkeley, 2005. Zbl1133.14022MR2707740
- D. F. Coray and C. Manoil, On large Picard groups and the Hasse principle for curves and surfaces. Acta. Arith. 76 (1996), pp. 165–189. Zbl0877.14005MR1393513
- W. Hürlimann, Brauer group and Diophantine geometry: A cohomological approach, in: Brauer Groups in Ring Theory and Algebraic Geometry, Wilrijk, 1981. In: Lecture Notes in Math., vol. 917, Springer, Berlin, 1982, pp. 43–65. Zbl0487.14006MR657422
- V.A. Iskovskikh, A counterexample to the Hasse principle for systems of two quadratic forms in five variables. Mat. Zametki 10 (1971), 253–257. Zbl0221.10028MR286743
- C.E. Lind, Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins. Thesis, University of Uppasala, 1940. Zbl0025.24802MR22563
- Yu.I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne. In Actes du Congrès International des Mathématiciens, (Nice, 1970), pp. 401–411. Zbl0239.14010MR427322
- B. Poonen, An explicit family of genus-one curves violating the Hasse principle. J. Théor. Nombres Bordeaux 13 (2001), no. 1, 263–274. Zbl1046.11038MR1838086
- B. Poonen, Existence of rational points on smooth projective varieties. J. Eur. Math. Soc. 11 (2009), no. 3, pp. 529–543. Zbl1183.14032MR2505440
- H. Reichardt, Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen. J. Reine Angew. Math. 184 (1942), pp. 12–18. Zbl68.0070.01MR9381
- M. Reid, The complete intersection of two or more quadrics. Ph.D thesis, University of Cambridge, 1972.
- A.N. Skorobogatov, Torsors and rational points, CTM 144. Cambridge Univ. Press, 2001. Zbl0972.14015MR1845760
- H.P.F. Swinnerton-Dyer, Brauer-Manin obstructions on some Del Pezzo surfaces. Math. Proc. Cam. Phil. Soc. 125 (1999), pp. 193–198. Zbl0951.14010MR1643855
- Oliver Wittenberg, Intersections de deux quadriques et pinceaux de courbes de genre . Lecture Notes in Mathematics. 1901, Springer, Berlin, 2007.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.