Perfect powers in products of integers from a block of consecutive integers (II)

T. N. Shorey; Yu. V. Nesterenko

Acta Arithmetica (1996)

  • Volume: 76, Issue: 2, page 191-198
  • ISSN: 0065-1036

How to cite

top

T. N. Shorey, and Yu. V. Nesterenko. "Perfect powers in products of integers from a block of consecutive integers (II)." Acta Arithmetica 76.2 (1996): 191-198. <http://eudml.org/doc/206894>.

@article{T1996,
author = {T. N. Shorey, Yu. V. Nesterenko},
journal = {Acta Arithmetica},
keywords = {perfect powers; products of integers; exponential diophantine equation},
language = {eng},
number = {2},
pages = {191-198},
title = {Perfect powers in products of integers from a block of consecutive integers (II)},
url = {http://eudml.org/doc/206894},
volume = {76},
year = {1996},
}

TY - JOUR
AU - T. N. Shorey
AU - Yu. V. Nesterenko
TI - Perfect powers in products of integers from a block of consecutive integers (II)
JO - Acta Arithmetica
PY - 1996
VL - 76
IS - 2
SP - 191
EP - 198
LA - eng
KW - perfect powers; products of integers; exponential diophantine equation
UR - http://eudml.org/doc/206894
ER -

References

top
  1. [1] A. Baker, Rational approximations to ∛2 and other algebraic numbers, Quart. J. Math. Oxford Ser. (2) 15 (1964), 375-383. Zbl0222.10036
  2. [2] A. Baker, Simultaneous rational approximations to certain algebraic numbers, Proc. Cambridge Philos. Soc. 63 (1967), 693-702. Zbl0166.05503
  3. [3] A. Baker, The theory of linear forms in logarithms, in: Transcendence Theory: Advances and Applications, Academic Press, 1977, 1-27. 
  4. [4] P. Erdős, On the product of consecutive integers III, Indag. Math. 17 (1955), 85-90. Zbl0068.03704
  5. [5] P. Erdős and J. L. Selfridge, The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292-301. Zbl0295.10017
  6. [6] J. H. Loxton, M. Mignotte, A. J. van der Poorten and M. Waldschmidt, A lower bound for linear forms in the logarithms of algebraic numbers, C. R. Math. Rep. Acad. Sci. Canada 11 (1987), 119-124. Zbl0623.10023
  7. [7] T. N. Shorey, Perfect powers in values of certain polynomials at integer points, Math. Proc. Cambridge Philos. Soc. 99 (1986), 195-207. Zbl0598.10029
  8. [8] T. N. Shorey, Perfect powers in products of integers from a block of consecutive integers, Acta Arith. 49 (1987), 71-79. Zbl0582.10012

NotesEmbed ?

top

You must be logged in to post comments.