Perfect powers in products of integers from a block of consecutive integers (II)
T. N. Shorey; Yu. V. Nesterenko
Acta Arithmetica (1996)
- Volume: 76, Issue: 2, page 191-198
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] A. Baker, Rational approximations to ∛2 and other algebraic numbers, Quart. J. Math. Oxford Ser. (2) 15 (1964), 375-383. Zbl0222.10036
- [2] A. Baker, Simultaneous rational approximations to certain algebraic numbers, Proc. Cambridge Philos. Soc. 63 (1967), 693-702. Zbl0166.05503
- [3] A. Baker, The theory of linear forms in logarithms, in: Transcendence Theory: Advances and Applications, Academic Press, 1977, 1-27.
- [4] P. Erdős, On the product of consecutive integers III, Indag. Math. 17 (1955), 85-90. Zbl0068.03704
- [5] P. Erdős and J. L. Selfridge, The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292-301. Zbl0295.10017
- [6] J. H. Loxton, M. Mignotte, A. J. van der Poorten and M. Waldschmidt, A lower bound for linear forms in the logarithms of algebraic numbers, C. R. Math. Rep. Acad. Sci. Canada 11 (1987), 119-124. Zbl0623.10023
- [7] T. N. Shorey, Perfect powers in values of certain polynomials at integer points, Math. Proc. Cambridge Philos. Soc. 99 (1986), 195-207. Zbl0598.10029
- [8] T. N. Shorey, Perfect powers in products of integers from a block of consecutive integers, Acta Arith. 49 (1987), 71-79. Zbl0582.10012