On the family of Thue equations x³ - (n-1)x²y - (n+2)xy² - y³ = k

M. Mignotte; A. Pethő; F. Lemmermeyer

Acta Arithmetica (1996)

  • Volume: 76, Issue: 3, page 245-269
  • ISSN: 0065-1036

How to cite

top

M. Mignotte, A. Pethő, and F. Lemmermeyer. "On the family of Thue equations x³ - (n-1)x²y - (n+2)xy² - y³ = k." Acta Arithmetica 76.3 (1996): 245-269. <http://eudml.org/doc/206898>.

@article{M1996,
author = {M. Mignotte, A. Pethő, F. Lemmermeyer},
journal = {Acta Arithmetica},
keywords = {cubic Thue equation; simplest cubic fields; bounds for the solutions; linear forms in logarithms; Liouville's inequality for rational approximations},
language = {eng},
number = {3},
pages = {245-269},
title = {On the family of Thue equations x³ - (n-1)x²y - (n+2)xy² - y³ = k},
url = {http://eudml.org/doc/206898},
volume = {76},
year = {1996},
}

TY - JOUR
AU - M. Mignotte
AU - A. Pethő
AU - F. Lemmermeyer
TI - On the family of Thue equations x³ - (n-1)x²y - (n+2)xy² - y³ = k
JO - Acta Arithmetica
PY - 1996
VL - 76
IS - 3
SP - 245
EP - 269
LA - eng
KW - cubic Thue equation; simplest cubic fields; bounds for the solutions; linear forms in logarithms; Liouville's inequality for rational approximations
UR - http://eudml.org/doc/206898
ER -

References

top
  1. [BD] A. Baker and H. Davenport, The equations 3x²-2 = y² and 8x²-7 = z², Quart. J. Math. Oxford 20 (1969), 129-137. 
  2. [BSt] A. Baker and C. L. Stewart, On effective approximations to cubic irrationals, in: New Advances in Transcendence Theory, Proc. Sympos., Durham 1986, A. Baker (ed.), Cambridge Univ. Press, 1988, 1-24. 
  3. [BW] A. Baker and G. Wüstholz, Linear forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. Zbl0788.11026
  4. [GyP] K. Győry and Z. Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, in: Studies in Pure Mathematics (to the memory of Paul Turán), P. Erdős (ed.), Akadémiai Kiadó and Birkhäuser, Budapest, 1983, 245-257. 
  5. [LMN] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321. 
  6. [LP] F. Lemmermeyer and A. Pethő, Simplest number fields, Manuscripta Math. 88 (1995), 53-58. Zbl0851.11059
  7. [LeP] G. Lettl and A. Pethő, Complete solution of a family of quartic Thue equations, Abh. Math. Sem. Univ. Hamburg 65 (1995), 365-383. Zbl0853.11021
  8. [M] M. Mignotte, Verification of a conjecture of E. Thomas, J. Number Theory 44 (1993), 172-177. 
  9. [MPR] M. Mignotte, A. Pethő and R. Roth, Complete solutions of quartic Thue and index form equations, Math. Comp. 65 (1996), 341-354. Zbl0853.11022
  10. [MT] M. Mignotte and N. Tzanakis, On a family of cubics, J. Number Theory 39 (1991), 41-49. Zbl0734.11025
  11. [P1] A. Pethő, On the representation of 1 by binary cubic forms with positive discriminant, in: Number Theory, Ulm 1987, H. P. Schlickewei and E. Wirsing (eds.), Lecture Notes in Math. 1380, Springer, 1989, 185-196. 
  12. [P2] A. Pethő, Complete solutions to a family of quartic diophantine equations, Math. Comp. 57 (1991), 777-798. Zbl0738.11028
  13. [PSch] A. Pethő und R. Schulenberg, Effektives Lösen von Thue Gleichungen, Publ. Math. Debrecen 34 (1987), 189-196. 
  14. [T1] E. Thomas, Complete solutions to a family of cubic diophantine equations, J. Number Theory 34 (1990), 235-250. Zbl0697.10011
  15. [T2] E. Thomas, Solutions to certain families of Thue equations, J. Number Theory 43 (1993), 319-369. Zbl0774.11013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.