Effective solution of families of Thue equations containing several parameters

Clemens Heuberger; Robert F. Tichy

Acta Arithmetica (1999)

  • Volume: 91, Issue: 2, page 147-163
  • ISSN: 0065-1036

How to cite

top

Clemens Heuberger, and Robert F. Tichy. "Effective solution of families of Thue equations containing several parameters." Acta Arithmetica 91.2 (1999): 147-163. <http://eudml.org/doc/207345>.

@article{ClemensHeuberger1999,
author = {Clemens Heuberger, Robert F. Tichy},
journal = {Acta Arithmetica},
keywords = {Thue equations; parametric family},
language = {eng},
number = {2},
pages = {147-163},
title = {Effective solution of families of Thue equations containing several parameters},
url = {http://eudml.org/doc/207345},
volume = {91},
year = {1999},
}

TY - JOUR
AU - Clemens Heuberger
AU - Robert F. Tichy
TI - Effective solution of families of Thue equations containing several parameters
JO - Acta Arithmetica
PY - 1999
VL - 91
IS - 2
SP - 147
EP - 163
LA - eng
KW - Thue equations; parametric family
UR - http://eudml.org/doc/207345
ER -

References

top
  1. [1] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. Zbl0788.11026
  2. [2] Yu. Bilu and G. Hanrot, Solving Thue equations of high degree, J. Number Theory 60 (1996), 373-392. Zbl0867.11017
  3. [3] Y. Bugeaud and K. Győry, Bounds for the solutions of Thue-Mahler equations and norm form equations, Acta Arith. 74 (1996), 273-292. Zbl0861.11024
  4. [4] J. H. Chen and P. M. Voutier, Complete solution of the Diophantine equation X 2 + 1 = d Y 4 and a related family of quartic Thue equations, J. Number Theory 62 (1997), 71-99. Zbl0869.11025
  5. [5] I. Gaál, On the resolution of some Diophantine equations, in: Computational Number Theory, A. Pethő, M. Pohst, H. C. Williams and H. G. Zimmer (eds.), de Gruyter, Berlin, 1991, 261-280. Zbl0733.11054
  6. [6] I. Gaál and G. Lettl, A parametric family of quintic Thue equations, Math. Comp., to appear. Zbl0983.11014
  7. [7] F. Halter-Koch, G. Lettl, A. Pethő and R. F. Tichy, Thue equations associated with Ankeny-Brauer-Chowla number fields, J. London Math. Soc., to appear. Zbl0965.11009
  8. [8] C. Heuberger, On families of parametrized Thue equations, J. Number Theory 76 (1999), 45-61. 
  9. [9] C. Heuberger, On a family of quintic Thue equations, J. Symbolic Comput. 26 (1998), 173-185. Zbl0915.11017
  10. [10] C. Heuberger, A. Pethő and R. F. Tichy, Complete solution of parametrized Thue equations, Acta Math. Inform. Univ. Ostraviensis 6 (1998), 93-113. Zbl1024.11017
  11. [11] S. Lang, Elliptic Curves: Diophantine Analysis, Grundlehren Math. Wiss. 23, Springer, Berlin, 1978. 
  12. [12] E. Lee, Studies on Diophantine equations, Ph.D. thesis, Cambridge Univ., 1992. 
  13. [13] G. Lettl and A. Pethő, Complete solution of a family of quartic Thue equations, Abh. Math. Sem. Univ. Hamburg 65 (1995), 365-383. Zbl0853.11021
  14. [14] G. Lettl, A. Pethő and P. Voutier, Simple families of Thue inequalities, Trans. Amer. Math. Soc. 351 (1999), 1871-1894. Zbl0920.11041
  15. [15] G. Lettl, A. Pethő and P. Voutier, On the arithmetic of simplest sextic fields and related Thue equations, in: Number Theory, Diophantine, Computational and Algebraic Aspects (Eger, 1996), K. Győry, A. Pethő and V. T. Sós (eds.), de Gruyter, Berlin, 1998, 331-348. Zbl0923.11053
  16. [16] M. Mignotte, Verification of a conjecture of E. Thomas, J. Number Theory 44 (1993), 172-177. 
  17. [17] M. Mignotte, A. Pethő and F. Lemmermeyer, On the family of Thue equations x 3 - ( n - 1 ) x 2 y - ( n + 2 ) x y 2 - y 3 = k , Acta Arith. 76 (1996), 245-269. Zbl0862.11028
  18. [18] M. Mignotte, A. Pethő and R. Roth, Complete solutions of quartic Thue and index form equations, Math. Comp. 65 (1996), 341-354. Zbl0853.11022
  19. [19] M. Mignotte and N. Tzanakis, On a family of cubics, J. Number Theory 39 (1991), 41-49. 
  20. [20] A. Pethő, Complete solutions to families of quartic Thue equations, Math. Comp. 57 (1991), 777-798. Zbl0738.11028
  21. [21] A. Pethő and R. F. Tichy, On two-parametric quartic families of Diophantine problems, J. Symbolic Comput. 26 (1998), 151-171. Zbl0926.11016
  22. [22] M. Pohst, Regulatorabschätzungen für total reelle algebraische Zahlkörper, J. Number Theory 9 (1977), 459-492. Zbl0366.12011
  23. [23] M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, Cambridge, 1989. 
  24. [24] I. Schur, Aufgabe 226, Arch. Math. Physik 13 (1908), 367. 
  25. [25] E. Thomas, Complete solutions to a family of cubic Diophantine equations, J. Number Theory 34 (1990), 235-250. Zbl0697.10011
  26. [26] E. Thomas, Solutions to certain families of Thue equations, ibid. 43 (1993), 319-369. Zbl0774.11013
  27. [27] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135 (1909), 284-305. 
  28. [28] I. Wakabayashi, On a family of quartic Thue inequalities I, J. Number Theory 66 (1997), 70-84. Zbl0884.11021
  29. [29] M. Waldschmidt, Minoration de combinaisons linéaires de logarithmes de nombres algébriques, Canad. J. Math. 45 (1993), 176-224. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.