Effective solution of families of Thue equations containing several parameters
Clemens Heuberger; Robert F. Tichy
Acta Arithmetica (1999)
- Volume: 91, Issue: 2, page 147-163
- ISSN: 0065-1036
Access Full Article
topHow to cite
topClemens Heuberger, and Robert F. Tichy. "Effective solution of families of Thue equations containing several parameters." Acta Arithmetica 91.2 (1999): 147-163. <http://eudml.org/doc/207345>.
@article{ClemensHeuberger1999,
author = {Clemens Heuberger, Robert F. Tichy},
journal = {Acta Arithmetica},
keywords = {Thue equations; parametric family},
language = {eng},
number = {2},
pages = {147-163},
title = {Effective solution of families of Thue equations containing several parameters},
url = {http://eudml.org/doc/207345},
volume = {91},
year = {1999},
}
TY - JOUR
AU - Clemens Heuberger
AU - Robert F. Tichy
TI - Effective solution of families of Thue equations containing several parameters
JO - Acta Arithmetica
PY - 1999
VL - 91
IS - 2
SP - 147
EP - 163
LA - eng
KW - Thue equations; parametric family
UR - http://eudml.org/doc/207345
ER -
References
top- [1] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. Zbl0788.11026
- [2] Yu. Bilu and G. Hanrot, Solving Thue equations of high degree, J. Number Theory 60 (1996), 373-392. Zbl0867.11017
- [3] Y. Bugeaud and K. Győry, Bounds for the solutions of Thue-Mahler equations and norm form equations, Acta Arith. 74 (1996), 273-292. Zbl0861.11024
- [4] J. H. Chen and P. M. Voutier, Complete solution of the Diophantine equation and a related family of quartic Thue equations, J. Number Theory 62 (1997), 71-99. Zbl0869.11025
- [5] I. Gaál, On the resolution of some Diophantine equations, in: Computational Number Theory, A. Pethő, M. Pohst, H. C. Williams and H. G. Zimmer (eds.), de Gruyter, Berlin, 1991, 261-280. Zbl0733.11054
- [6] I. Gaál and G. Lettl, A parametric family of quintic Thue equations, Math. Comp., to appear. Zbl0983.11014
- [7] F. Halter-Koch, G. Lettl, A. Pethő and R. F. Tichy, Thue equations associated with Ankeny-Brauer-Chowla number fields, J. London Math. Soc., to appear. Zbl0965.11009
- [8] C. Heuberger, On families of parametrized Thue equations, J. Number Theory 76 (1999), 45-61.
- [9] C. Heuberger, On a family of quintic Thue equations, J. Symbolic Comput. 26 (1998), 173-185. Zbl0915.11017
- [10] C. Heuberger, A. Pethő and R. F. Tichy, Complete solution of parametrized Thue equations, Acta Math. Inform. Univ. Ostraviensis 6 (1998), 93-113. Zbl1024.11017
- [11] S. Lang, Elliptic Curves: Diophantine Analysis, Grundlehren Math. Wiss. 23, Springer, Berlin, 1978.
- [12] E. Lee, Studies on Diophantine equations, Ph.D. thesis, Cambridge Univ., 1992.
- [13] G. Lettl and A. Pethő, Complete solution of a family of quartic Thue equations, Abh. Math. Sem. Univ. Hamburg 65 (1995), 365-383. Zbl0853.11021
- [14] G. Lettl, A. Pethő and P. Voutier, Simple families of Thue inequalities, Trans. Amer. Math. Soc. 351 (1999), 1871-1894. Zbl0920.11041
- [15] G. Lettl, A. Pethő and P. Voutier, On the arithmetic of simplest sextic fields and related Thue equations, in: Number Theory, Diophantine, Computational and Algebraic Aspects (Eger, 1996), K. Győry, A. Pethő and V. T. Sós (eds.), de Gruyter, Berlin, 1998, 331-348. Zbl0923.11053
- [16] M. Mignotte, Verification of a conjecture of E. Thomas, J. Number Theory 44 (1993), 172-177.
- [17] M. Mignotte, A. Pethő and F. Lemmermeyer, On the family of Thue equations , Acta Arith. 76 (1996), 245-269. Zbl0862.11028
- [18] M. Mignotte, A. Pethő and R. Roth, Complete solutions of quartic Thue and index form equations, Math. Comp. 65 (1996), 341-354. Zbl0853.11022
- [19] M. Mignotte and N. Tzanakis, On a family of cubics, J. Number Theory 39 (1991), 41-49.
- [20] A. Pethő, Complete solutions to families of quartic Thue equations, Math. Comp. 57 (1991), 777-798. Zbl0738.11028
- [21] A. Pethő and R. F. Tichy, On two-parametric quartic families of Diophantine problems, J. Symbolic Comput. 26 (1998), 151-171. Zbl0926.11016
- [22] M. Pohst, Regulatorabschätzungen für total reelle algebraische Zahlkörper, J. Number Theory 9 (1977), 459-492. Zbl0366.12011
- [23] M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, Cambridge, 1989.
- [24] I. Schur, Aufgabe 226, Arch. Math. Physik 13 (1908), 367.
- [25] E. Thomas, Complete solutions to a family of cubic Diophantine equations, J. Number Theory 34 (1990), 235-250. Zbl0697.10011
- [26] E. Thomas, Solutions to certain families of Thue equations, ibid. 43 (1993), 319-369. Zbl0774.11013
- [27] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135 (1909), 284-305.
- [28] I. Wakabayashi, On a family of quartic Thue inequalities I, J. Number Theory 66 (1997), 70-84. Zbl0884.11021
- [29] M. Waldschmidt, Minoration de combinaisons linéaires de logarithmes de nombres algébriques, Canad. J. Math. 45 (1993), 176-224.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.