Développement en fraction continue à l'entier le plus proche, idéaux α-réduits et un problème d'Eisenstein

Pierre Kaplan; Yoshio Mimura

Acta Arithmetica (1996)

  • Volume: 76, Issue: 3, page 285-304
  • ISSN: 0065-1036

How to cite

top

Pierre Kaplan, and Yoshio Mimura. "Développement en fraction continue à l'entier le plus proche, idéaux α-réduits et un problème d'Eisenstein." Acta Arithmetica 76.3 (1996): 285-304. <http://eudml.org/doc/206900>.

@article{PierreKaplan1996,
author = {Pierre Kaplan, Yoshio Mimura},
journal = {Acta Arithmetica},
keywords = {reduced ideals; continued fraction expansions; quadratic irrationals; bounds on the period lengths},
language = {fre},
number = {3},
pages = {285-304},
title = {Développement en fraction continue à l'entier le plus proche, idéaux α-réduits et un problème d'Eisenstein},
url = {http://eudml.org/doc/206900},
volume = {76},
year = {1996},
}

TY - JOUR
AU - Pierre Kaplan
AU - Yoshio Mimura
TI - Développement en fraction continue à l'entier le plus proche, idéaux α-réduits et un problème d'Eisenstein
JO - Acta Arithmetica
PY - 1996
VL - 76
IS - 3
SP - 285
EP - 304
LA - fre
KW - reduced ideals; continued fraction expansions; quadratic irrationals; bounds on the period lengths
UR - http://eudml.org/doc/206900
ER -

References

top
  1. [1] G. Eisenstein, Aufgaben, J. Reine Angew. Math. 27 (1844), 86-87 (Werke I, Chelsea, New York, 1975, 111-112). 
  2. [2] C. F. Gauss, Arithmetische Untersuchungen (Disquisitiones Arithmeticae), Chelsea, New York, 1965. 
  3. [3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5ème éd., Oxford University Press, 1989. Zbl0020.29201
  4. [4] A. Hurwitz, Über eine besondere Art der Kettenbrüchen-Entwicklung reelle Grössen, Acta Math. 12 (1889), 367-405. 
  5. [5] N. Ishii, P. Kaplan and K. S. Williams, On Eisenstein's problem, Acta Arith. 54 (1990), 323-345. Zbl0717.11021
  6. [6] P. Kaplan, Idéaux k-réduits des ordres des corps quadratiques réels, J. Math. Soc. Japan 47 (1995), 171-181. 
  7. [7] P. Kaplan et P. A. Leonard, Idéaux négativement réduits d'un corps quadratique réel et un problème d'Eisenstein, Enseign. Math. 39 (1993), 196-210. 
  8. [8] P. Kaplan and K. S. Williams, Pell's equations X² - mY² = -1, -4 and continued fractions, J. Number Theory 23 (1986), 169-182. Zbl0596.10013
  9. [9] P. Kaplan and K. S. Williams, The distance between ideals in the orders of a real quadratic field, Enseign. Math. 36 (1990), 321-358. Zbl0726.11024
  10. [10] P. G. Lejeune Dirichlet und R. Dedekind, Vorlesungen über Zahlentheorie, Chelsea, New York, 1968. 
  11. [11] Y. Mimura, On odd solutions of the equation X² - DY² = 4, dans: Proc. Sympos. Analytic Number Theory and Related Topics, Gakushuin University, Tokyo, 1992, 110-118. 
  12. [12] H. C. Williams, Eisenstein problem and continued fractions, Utilitas Math. 37 (1990), 145-158. Zbl0718.11010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.