On characterization of Dirichlet L-functions

Takeo Funakura

Acta Arithmetica (1996)

  • Volume: 76, Issue: 4, page 305-315
  • ISSN: 0065-1036

How to cite

top

Takeo Funakura. "On characterization of Dirichlet L-functions." Acta Arithmetica 76.4 (1996): 305-315. <http://eudml.org/doc/206901>.

@article{TakeoFunakura1996,
author = {Takeo Funakura},
journal = {Acta Arithmetica},
keywords = {Dirichlet -functions; Hurwitz zeta function; absolute convergence; continuation; functional equations; Dirichlet series with recurrent coefficients; periodic functions},
language = {eng},
number = {4},
pages = {305-315},
title = {On characterization of Dirichlet L-functions},
url = {http://eudml.org/doc/206901},
volume = {76},
year = {1996},
}

TY - JOUR
AU - Takeo Funakura
TI - On characterization of Dirichlet L-functions
JO - Acta Arithmetica
PY - 1996
VL - 76
IS - 4
SP - 305
EP - 315
LA - eng
KW - Dirichlet -functions; Hurwitz zeta function; absolute convergence; continuation; functional equations; Dirichlet series with recurrent coefficients; periodic functions
UR - http://eudml.org/doc/206901
ER -

References

top
  1. [1] T. M. Apostol, Dirichlet L-functions and primitive characters, Proc. Amer. Math. Soc. 31 (1972), 384-386. Zbl0239.10023
  2. [2] T. M. Apostol, A note on periodic completely multiplicative arithmetical functions, Amer. Math. Monthly 83 (1975), 39-40. 
  3. [3] K. Chandrasekharan and R. Narashimhan, Hecke's functional equation and arithmetical identities, Ann. of Math. 74 (1961), 1-23. Zbl0107.03702
  4. [4] H. Hamburger, Über die Riemannsche Funktionalgleichung der ζ-Funktion, Math. Z. 10 (1921), 240-254; Math. Z. 11 (1921), 224-245; Math. Z. 13 (1922), 283-311. Zbl48.1210.03
  5. [5] H. Joris, On the evaluation of Gaussian sums for nonprimitive Dirichlet characters, Enseign. Math. 23 (1977), 13-l8 Zbl0352.10018
  6. [6] W. Schnee, Die Funktionalgleichung der Zeta-Funktion und der Dirichletschen Reihen mit periodischen Koeffizienten, Math. Z. 31 (1930), 378-390. 
  7. [7] C. Siegel, Bemerkungen zu einem Satz von Hamburger über die Funktionalgeichung der Riemannschen Zetafunktion, Math. Ann. 86 (1922), 276-279. Zbl48.1216.01
  8. [8] M. Toyoizumi, On certain infinite products, Mathematika 30 (1983), 4-10; II, Math. Ann. 31 (1984), 1-11; III, Acta Arith. 51 (1988), 221-231. Zbl0523.10013

NotesEmbed ?

top

You must be logged in to post comments.