A generalization of Lerch’s formula
We give higher-power generalizations of the classical Lerch formula for the gamma function.
Page 1 Next
Nobushige Kurokawa, Masato Wakayama (2004)
Czechoslovak Mathematical Journal
We give higher-power generalizations of the classical Lerch formula for the gamma function.
Eugenio P. Balanzario (2006)
Mathematica Slovaca
R. Balasubramanian (1980)
Acta Arithmetica
Đurđe Cvijović, Jacek Klinowski (2000)
Matematički Vesnik
Dennis A. Hejhal (1979)
Monatshefte für Mathematik
S. Chowla, D. Goldfeld (1976)
Acta Arithmetica
K. Ramachandra (1974)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Donald Rideout (1973)
Acta Arithmetica
Hirotaka Akatsuka (2006)
Acta Arithmetica
K. Ramachandra (1975)
Journal für die reine und angewandte Mathematik
Masanori Katsurada (1997)
Collectanea Mathematica
We shall establish full asymptotic expansions for the mean squares of Lerch zeta-functions, based on F. V. Atkinson's device. Mellin-Barnes' type integral expression for an infinite double sum will play a central role in the derivation of our main formulae.
Masanori Katsurada (2005)
Collectanea Mathematica
For the Lerch zeta-function Φ(s,x,λ) defined below, the multiple mean square of the form (1.1), together with its discrete and Irbid analogues, (1.2) and (1.3) are investigated by means of Atkinson's [2] dissection method applied to the product Φ(u,x,λ)Φ(υ,x,-λ), where u and υ are independent complex variables (see (4.2)). A complete asymptotic expansion of (1.1) as Im s → ±∞ is deduced from Theorem 1, while those of (1.2) and (1.3) as q → ∞ and (at the same time) as Im s → ±∞ are deduced from Theorems...
А.М. Никитин (1994)
Zapiski naucnych seminarov POMI
Don Redmond (1976)
Mathematische Annalen
Don Redmond (1978)
Mathematische Annalen
Donald M. Redmond (1979)
Mathematische Annalen
Dorian Goldfeld (1975)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
K. Bartz (1989)
Acta Arithmetica
W. Staś (1980)
Acta Arithmetica
Elizalde, E., Romeo, A. (1990)
International Journal of Mathematics and Mathematical Sciences
Page 1 Next