### A generalization of Lerch’s formula

We give higher-power generalizations of the classical Lerch formula for the gamma function.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

We give higher-power generalizations of the classical Lerch formula for the gamma function.

We shall establish full asymptotic expansions for the mean squares of Lerch zeta-functions, based on F. V. Atkinson's device. Mellin-Barnes' type integral expression for an infinite double sum will play a central role in the derivation of our main formulae.

For the Lerch zeta-function Φ(s,x,λ) defined below, the multiple mean square of the form (1.1), together with its discrete and Irbid analogues, (1.2) and (1.3) are investigated by means of Atkinson's [2] dissection method applied to the product Φ(u,x,λ)Φ(υ,x,-λ), where u and υ are independent complex variables (see (4.2)). A complete asymptotic expansion of (1.1) as Im s → ±∞ is deduced from Theorem 1, while those of (1.2) and (1.3) as q → ∞ and (at the same time) as Im s → ±∞ are deduced from Theorems...