Hyperelliptic modular curves X₀*(N) with square-free levels

Yuji Hasegawa; Ki-ichiro Hashimoto

Acta Arithmetica (1996)

  • Volume: 77, Issue: 2, page 179-193
  • ISSN: 0065-1036

How to cite

top

Yuji Hasegawa, and Ki-ichiro Hashimoto. "Hyperelliptic modular curves X₀*(N) with square-free levels." Acta Arithmetica 77.2 (1996): 179-193. <http://eudml.org/doc/206917>.

@article{YujiHasegawa1996,
author = {Yuji Hasegawa, Ki-ichiro Hashimoto},
journal = {Acta Arithmetica},
keywords = {genus 2; hyperelliptic modular curves},
language = {eng},
number = {2},
pages = {179-193},
title = {Hyperelliptic modular curves X₀*(N) with square-free levels},
url = {http://eudml.org/doc/206917},
volume = {77},
year = {1996},
}

TY - JOUR
AU - Yuji Hasegawa
AU - Ki-ichiro Hashimoto
TI - Hyperelliptic modular curves X₀*(N) with square-free levels
JO - Acta Arithmetica
PY - 1996
VL - 77
IS - 2
SP - 179
EP - 193
LA - eng
KW - genus 2; hyperelliptic modular curves
UR - http://eudml.org/doc/206917
ER -

References

top
  1. [1] A. O. L. Atkin and J. Lehner, Hecke operators on Γ₀(m), Math. Ann. 185 (1970), 134-160. 
  2. [2] A. O. L. Atkin and D. J. Tingley, Numerical tables on elliptic curves, in: Modular Functions of One Variable IV, B. Birch and W. Kuyk (eds.), Lecture Notes in Math. 476, Springer, Berlin, 1975, 74-144. 
  3. [3] P. Deligne et M. Rapoport, Les schémas de modules de courbes elliptiques, in: Modular Functions of One Variable II, P. Deligne and W. Kuyk (eds.), Lecture Notes in Math. 349, Springer, Berlin, 1973, 143-316. Zbl0281.14010
  4. [4] M. Eichler, The basis problem for modular forms and the traces of the Hecke operators, in: Modular Functions of One Variable I, W. Kuyk (ed.), Lecture Notes in Math. 320, Springer, Berlin, 1973, 75-151. 
  5. [5] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977. 
  6. [6] Y. Hasegawa, Table of quotient curves of modular curves X₀(N) with genus 2, Proc. Japan Acad. Ser. A 71 (1995), 235-239. Zbl0873.11040
  7. [7] K. Hashimoto, On Brandt matrices of Eichler orders, Mem. School Sci. Engrg. Waseda Univ. 59 (1995), 143-165. 
  8. [8] H. Hijikata, Explicit formula of the traces of Hecke operators for Γ₀(N), J. Math. Soc. Japan 26 (1974), 56-82. Zbl0266.12009
  9. [9] J. Igusa, Kroneckerian model of fields of elliptic modular functions, Amer. J. Math. 81 (1959), 561-577. Zbl0093.04502
  10. [10] P. G. Kluit, Hecke operators on Γ*(N) and their traces , Dissertation of Vrije Universiteit, Amsterdam, 1979. 
  11. [11] J. Lehner and M. Newman, Weierstrass points of Γ₀(N), Ann. of Math. 79 (1964), 360-368. Zbl0124.29203
  12. [12] N. Murabayashi, On normal forms of modular curves of genus 2, Osaka J. Math. 29 (1992), 405-418. Zbl0774.14025
  13. [13] A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449-462. Zbl0314.10018
  14. [14] A. P. Ogg, Modular functions, in: The Santa Cruz Conference on Finite Groups, B. Cooperstein and G. Mason (eds.), Proc. Sympos. Pure Math. 37, Amer. Math. Soc., Providence, R.I., 1980, 521-532. 
  15. [15] A. Pizer, An algorithm for computing modular forms on Γ₀(N), J. Algebra 64 (1980), 340-390. Zbl0433.10012
  16. [16] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton Univ. Press, 1971. Zbl0221.10029
  17. [17] M. Yamauchi, On the traces of Hecke operators for a normalizer of Γ₀(N), J. Math. Kyoto Univ. 13 (1973), 403-411. Zbl0267.10038

NotesEmbed ?

top

You must be logged in to post comments.