Hyperelliptic modular curves X₀*(N) with square-free levels

Yuji Hasegawa; Ki-ichiro Hashimoto

Acta Arithmetica (1996)

  • Volume: 77, Issue: 2, page 179-193
  • ISSN: 0065-1036

How to cite

top

Yuji Hasegawa, and Ki-ichiro Hashimoto. "Hyperelliptic modular curves X₀*(N) with square-free levels." Acta Arithmetica 77.2 (1996): 179-193. <http://eudml.org/doc/206917>.

@article{YujiHasegawa1996,
author = {Yuji Hasegawa, Ki-ichiro Hashimoto},
journal = {Acta Arithmetica},
keywords = {genus 2; hyperelliptic modular curves},
language = {eng},
number = {2},
pages = {179-193},
title = {Hyperelliptic modular curves X₀*(N) with square-free levels},
url = {http://eudml.org/doc/206917},
volume = {77},
year = {1996},
}

TY - JOUR
AU - Yuji Hasegawa
AU - Ki-ichiro Hashimoto
TI - Hyperelliptic modular curves X₀*(N) with square-free levels
JO - Acta Arithmetica
PY - 1996
VL - 77
IS - 2
SP - 179
EP - 193
LA - eng
KW - genus 2; hyperelliptic modular curves
UR - http://eudml.org/doc/206917
ER -

References

top
  1. [1] A. O. L. Atkin and J. Lehner, Hecke operators on Γ₀(m), Math. Ann. 185 (1970), 134-160. 
  2. [2] A. O. L. Atkin and D. J. Tingley, Numerical tables on elliptic curves, in: Modular Functions of One Variable IV, B. Birch and W. Kuyk (eds.), Lecture Notes in Math. 476, Springer, Berlin, 1975, 74-144. 
  3. [3] P. Deligne et M. Rapoport, Les schémas de modules de courbes elliptiques, in: Modular Functions of One Variable II, P. Deligne and W. Kuyk (eds.), Lecture Notes in Math. 349, Springer, Berlin, 1973, 143-316. Zbl0281.14010
  4. [4] M. Eichler, The basis problem for modular forms and the traces of the Hecke operators, in: Modular Functions of One Variable I, W. Kuyk (ed.), Lecture Notes in Math. 320, Springer, Berlin, 1973, 75-151. 
  5. [5] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977. 
  6. [6] Y. Hasegawa, Table of quotient curves of modular curves X₀(N) with genus 2, Proc. Japan Acad. Ser. A 71 (1995), 235-239. Zbl0873.11040
  7. [7] K. Hashimoto, On Brandt matrices of Eichler orders, Mem. School Sci. Engrg. Waseda Univ. 59 (1995), 143-165. 
  8. [8] H. Hijikata, Explicit formula of the traces of Hecke operators for Γ₀(N), J. Math. Soc. Japan 26 (1974), 56-82. Zbl0266.12009
  9. [9] J. Igusa, Kroneckerian model of fields of elliptic modular functions, Amer. J. Math. 81 (1959), 561-577. Zbl0093.04502
  10. [10] P. G. Kluit, Hecke operators on Γ*(N) and their traces , Dissertation of Vrije Universiteit, Amsterdam, 1979. 
  11. [11] J. Lehner and M. Newman, Weierstrass points of Γ₀(N), Ann. of Math. 79 (1964), 360-368. Zbl0124.29203
  12. [12] N. Murabayashi, On normal forms of modular curves of genus 2, Osaka J. Math. 29 (1992), 405-418. Zbl0774.14025
  13. [13] A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449-462. Zbl0314.10018
  14. [14] A. P. Ogg, Modular functions, in: The Santa Cruz Conference on Finite Groups, B. Cooperstein and G. Mason (eds.), Proc. Sympos. Pure Math. 37, Amer. Math. Soc., Providence, R.I., 1980, 521-532. 
  15. [15] A. Pizer, An algorithm for computing modular forms on Γ₀(N), J. Algebra 64 (1980), 340-390. Zbl0433.10012
  16. [16] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton Univ. Press, 1971. Zbl0221.10029
  17. [17] M. Yamauchi, On the traces of Hecke operators for a normalizer of Γ₀(N), J. Math. Kyoto Univ. 13 (1973), 403-411. Zbl0267.10038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.