A note on the number of solutions of the generalized Ramanujan-Nagell equation
Acta Arithmetica (1996)
- Volume: 78, Issue: 1, page 11-18
- ISSN: 0065-1036
Access Full Article
topHow to cite
topMaohua Le. "A note on the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = k^n$." Acta Arithmetica 78.1 (1996): 11-18. <http://eudml.org/doc/206929>.
@article{MaohuaLe1996,
author = {Maohua Le},
journal = {Acta Arithmetica},
keywords = {exponential diophantine equations; number of solutions of the generalized Ramanujan-Nagell equation},
language = {eng},
number = {1},
pages = {11-18},
title = {A note on the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = k^n$},
url = {http://eudml.org/doc/206929},
volume = {78},
year = {1996},
}
TY - JOUR
AU - Maohua Le
TI - A note on the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = k^n$
JO - Acta Arithmetica
PY - 1996
VL - 78
IS - 1
SP - 11
EP - 18
LA - eng
KW - exponential diophantine equations; number of solutions of the generalized Ramanujan-Nagell equation
UR - http://eudml.org/doc/206929
ER -
References
top- [1] R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris Sér. A 251 (1960), 1263-1264. Zbl0093.04703
- [2] R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris Sér. A 251 (1960), 1451-1452. Zbl0093.04703
- [3] F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arith. 38 (1981), 389-410. Zbl0371.10014
- [4] F. Beukers, On the generalized Ramanujan-Nagell equation II, Acta Arith. 39 (1981), 113-123. Zbl0377.10012
- [5] E. Brown, The diophantine equation of the form , J. Reine Angew. Math. 274/275 (1975), 385-389. Zbl0303.10014
- [6] X.-G. Chen and M.-H. Le, On the number of solutions of the generalized Ramanujan-Nagell equation , Publ. Math. Debrecen, to appear.
- [7] L.-K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.
- [8] M.-H. Le, On the generalized Ramanujan-Nagell equation , Acta Arith. 58 (1991), 289-298.
- [9] M.-H. Le, On the number of solutions of the generalized Ramanujan-Nagell equation , Acta Arith. 60 (1991), 149-167.
- [10] M.-H. Le, Sur le nombre de solutions de l’équation diophantienne , C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 135-138.
- [11] M.-H. Le, Some exponential diophantine equations I: The equation , J. Number Theory 55 (1995), 209-221.
- [12] V. A. Lebesgue, Sur l’impossibilité, en nombres entiers, de l’équation , Nouv. Ann. Math. (1) 9 (1850), 178-181.
- [13] T. Nagell, Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova Acta R. Soc. Sc. Uppsal. (4) 16 (1954), No. 2.
- [14] N. Tzanakis and J. Wolfskill, On the diophantine equation , J. Number Theory 23 (1986), 219-237. Zbl0586.10011
- [15] T.-J. Xu and M.-H. Le, On the diophantine equation , Publ. Math. Debrecen 47 (1995), 293-297.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.