Maximal independent systems of units in global function fields

Fei Xu; Jianqiang Zhao

Acta Arithmetica (1996)

  • Volume: 78, Issue: 1, page 1-10
  • ISSN: 0065-1036

How to cite

top

Fei Xu, and Jianqiang Zhao. "Maximal independent systems of units in global function fields." Acta Arithmetica 78.1 (1996): 1-10. <http://eudml.org/doc/206931>.

@article{FeiXu1996,
author = {Fei Xu, Jianqiang Zhao},
journal = {Acta Arithmetica},
keywords = {elliptic modules; independent systems of units; abelian extension; global function field},
language = {eng},
number = {1},
pages = {1-10},
title = {Maximal independent systems of units in global function fields},
url = {http://eudml.org/doc/206931},
volume = {78},
year = {1996},
}

TY - JOUR
AU - Fei Xu
AU - Jianqiang Zhao
TI - Maximal independent systems of units in global function fields
JO - Acta Arithmetica
PY - 1996
VL - 78
IS - 1
SP - 1
EP - 10
LA - eng
KW - elliptic modules; independent systems of units; abelian extension; global function field
UR - http://eudml.org/doc/206931
ER -

References

top
  1. [FY] K. Feng, L. Yin, Maximal independent systems of units in cyclotomic function fields, Sci. China 34 (1991), 908-919. Zbl0749.11046
  2. [GR1] S. Galovich, M. Rosen, The class number of cyclotomic function fields, J. Number Theory 13 (1981), 363-375. Zbl0473.12014
  3. [GR2] S. Galovich, Units and class group in cyclotomic function fields, J. Number Theory 14 (1982), 156-184. Zbl0483.12003
  4. [H1] D. Hayes, Elliptic units in function fields, in: Proceedings of a Conference Related to Fermat's Last Theorem, D. Goldfeld (ed.), Birkhäuser, Boston, 1982, 321-341. 
  5. [H2] D. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields, Proceedings of the Workshop at the Ohio State University, D. Goss, D. Hayes and M. Rosen (eds.), Walter de Gruyter, Berlin, New York, 1992, 1-32. 
  6. [H3] D. Hayes, Stickelberger elements in function fields, Compositio Math. 55 (1985), 209-239. Zbl0569.12008
  7. [H4] D. Hayes, Explicit class field theory in global function fields, in: Studies in Algebra and Number Theory, Adv. in Math. Suppl. Stud. 6, Academic Press, 1979, 173-271. 
  8. [O] H. Oukhaba, Elliptic units in global function fields, in: The Arithmetic of Function Fields, Proceedings of the Workshop at the Ohio State University, D. Goss, D. Hayes and M. Rosen (eds.), Walter de Gruyter, Berlin, New York, 1992, 87-102. Zbl0804.11042
  9. [R] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378. Zbl0632.12017
  10. [S] L. Shu, Class number formulas over global function fields, J. Number Theory 48 (1994), 133-161. Zbl0817.11051
  11. [W] A. Weil, Basic Number Theory, Springer, New York, 1974. Zbl0326.12001
  12. [Y] L. Yin, Index-class number formulas over global function fields, Preprint series 95-42, Department of Mathematics, University of Tokyo, 1995. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.