Maximal independent systems of units in global function fields

Fei Xu; Jianqiang Zhao

Acta Arithmetica (1996)

  • Volume: 78, Issue: 1, page 1-10
  • ISSN: 0065-1036

How to cite

top

Fei Xu, and Jianqiang Zhao. "Maximal independent systems of units in global function fields." Acta Arithmetica 78.1 (1996): 1-10. <http://eudml.org/doc/206931>.

@article{FeiXu1996,
author = {Fei Xu, Jianqiang Zhao},
journal = {Acta Arithmetica},
keywords = {elliptic modules; independent systems of units; abelian extension; global function field},
language = {eng},
number = {1},
pages = {1-10},
title = {Maximal independent systems of units in global function fields},
url = {http://eudml.org/doc/206931},
volume = {78},
year = {1996},
}

TY - JOUR
AU - Fei Xu
AU - Jianqiang Zhao
TI - Maximal independent systems of units in global function fields
JO - Acta Arithmetica
PY - 1996
VL - 78
IS - 1
SP - 1
EP - 10
LA - eng
KW - elliptic modules; independent systems of units; abelian extension; global function field
UR - http://eudml.org/doc/206931
ER -

References

top
  1. [FY] K. Feng, L. Yin, Maximal independent systems of units in cyclotomic function fields, Sci. China 34 (1991), 908-919. Zbl0749.11046
  2. [GR1] S. Galovich, M. Rosen, The class number of cyclotomic function fields, J. Number Theory 13 (1981), 363-375. Zbl0473.12014
  3. [GR2] S. Galovich, Units and class group in cyclotomic function fields, J. Number Theory 14 (1982), 156-184. Zbl0483.12003
  4. [H1] D. Hayes, Elliptic units in function fields, in: Proceedings of a Conference Related to Fermat's Last Theorem, D. Goldfeld (ed.), Birkhäuser, Boston, 1982, 321-341. 
  5. [H2] D. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields, Proceedings of the Workshop at the Ohio State University, D. Goss, D. Hayes and M. Rosen (eds.), Walter de Gruyter, Berlin, New York, 1992, 1-32. 
  6. [H3] D. Hayes, Stickelberger elements in function fields, Compositio Math. 55 (1985), 209-239. Zbl0569.12008
  7. [H4] D. Hayes, Explicit class field theory in global function fields, in: Studies in Algebra and Number Theory, Adv. in Math. Suppl. Stud. 6, Academic Press, 1979, 173-271. 
  8. [O] H. Oukhaba, Elliptic units in global function fields, in: The Arithmetic of Function Fields, Proceedings of the Workshop at the Ohio State University, D. Goss, D. Hayes and M. Rosen (eds.), Walter de Gruyter, Berlin, New York, 1992, 87-102. Zbl0804.11042
  9. [R] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378. Zbl0632.12017
  10. [S] L. Shu, Class number formulas over global function fields, J. Number Theory 48 (1994), 133-161. Zbl0817.11051
  11. [W] A. Weil, Basic Number Theory, Springer, New York, 1974. Zbl0326.12001
  12. [Y] L. Yin, Index-class number formulas over global function fields, Preprint series 95-42, Department of Mathematics, University of Tokyo, 1995. 

NotesEmbed ?

top

You must be logged in to post comments.