Maximal independent systems of units in global function fields
Acta Arithmetica (1996)
- Volume: 78, Issue: 1, page 1-10
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [FY] K. Feng, L. Yin, Maximal independent systems of units in cyclotomic function fields, Sci. China 34 (1991), 908-919. Zbl0749.11046
- [GR1] S. Galovich, M. Rosen, The class number of cyclotomic function fields, J. Number Theory 13 (1981), 363-375. Zbl0473.12014
- [GR2] S. Galovich, Units and class group in cyclotomic function fields, J. Number Theory 14 (1982), 156-184. Zbl0483.12003
- [H1] D. Hayes, Elliptic units in function fields, in: Proceedings of a Conference Related to Fermat's Last Theorem, D. Goldfeld (ed.), Birkhäuser, Boston, 1982, 321-341.
- [H2] D. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields, Proceedings of the Workshop at the Ohio State University, D. Goss, D. Hayes and M. Rosen (eds.), Walter de Gruyter, Berlin, New York, 1992, 1-32.
- [H3] D. Hayes, Stickelberger elements in function fields, Compositio Math. 55 (1985), 209-239. Zbl0569.12008
- [H4] D. Hayes, Explicit class field theory in global function fields, in: Studies in Algebra and Number Theory, Adv. in Math. Suppl. Stud. 6, Academic Press, 1979, 173-271.
- [O] H. Oukhaba, Elliptic units in global function fields, in: The Arithmetic of Function Fields, Proceedings of the Workshop at the Ohio State University, D. Goss, D. Hayes and M. Rosen (eds.), Walter de Gruyter, Berlin, New York, 1992, 87-102. Zbl0804.11042
- [R] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378. Zbl0632.12017
- [S] L. Shu, Class number formulas over global function fields, J. Number Theory 48 (1994), 133-161. Zbl0817.11051
- [W] A. Weil, Basic Number Theory, Springer, New York, 1974. Zbl0326.12001
- [Y] L. Yin, Index-class number formulas over global function fields, Preprint series 95-42, Department of Mathematics, University of Tokyo, 1995.