Stickelberger elements in function fields
Compositio Mathematica (1985)
- Volume: 55, Issue: 2, page 209-239
- ISSN: 0010-437X
Access Full Article
topHow to cite
topHayes, David R.. "Stickelberger elements in function fields." Compositio Mathematica 55.2 (1985): 209-239. <http://eudml.org/doc/89716>.
@article{Hayes1985,
author = {Hayes, David R.},
journal = {Compositio Mathematica},
keywords = {elliptic modules; cyclotomic function fields; Iwasawa theory; p-adic group ring; partial zeta-functions; ideal class groups; Stickelberger element; Stark's Abelian conjectures; Drinfeld modules; units},
language = {eng},
number = {2},
pages = {209-239},
publisher = {Martinus Nijhoff Publishers},
title = {Stickelberger elements in function fields},
url = {http://eudml.org/doc/89716},
volume = {55},
year = {1985},
}
TY - JOUR
AU - Hayes, David R.
TI - Stickelberger elements in function fields
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 55
IS - 2
SP - 209
EP - 239
LA - eng
KW - elliptic modules; cyclotomic function fields; Iwasawa theory; p-adic group ring; partial zeta-functions; ideal class groups; Stickelberger element; Stark's Abelian conjectures; Drinfeld modules; units
UR - http://eudml.org/doc/89716
ER -
References
top- [1] J. Coates: B-adic L-functions and Iwasawa's theory. A. Frölich (ed.), Algebraic Number Fields. London: Academic Press (1977) 269-353. Zbl0393.12027MR460282
- [2] V.G. Drinfeld: Elliptic Modules (Russian). Math. Sbornik94 (1974) 594-627 = Math. USSR Sbornik23 (1974) 561-592. Zbl0321.14014MR384707
- [3] S. Galovich and M. Rosen: The class number of cyclotomic function fields: J. Number Theory13 (1981) 363-375. Zbl0473.12014MR634206
- [4] S. Galovich and M. Rosen: Units and class groups in cyclotomic functions fields. J. Number Theory14 (1982) 156-184. Zbl0483.12003MR655724
- [5] S. Galovich and M. Rosen: Distributions on Rational Function Fields. Math. Annalen256 (1981) 549-60. Zbl0472.12013MR628234
- [6] D. Goss: The Γ-ideal and special zeta values, Duke Journal (1980) 345-364. Zbl0441.12002
- [7] D. Goss: On a new type of L-function for algebraic curves over finite fields. Pacific Journal105 (1983) 143-181. Zbl0571.14010MR688411
- [8] B. Gross: The annihilation of divisor classes in abelian extensions of the rational function field. Séminaire de Théorie des Nombres(Bordeaux1980-81), exposé no. 3. Zbl0507.14020
- [9] D. Hayes: Explicit class field theory for rational function fields. Trans. Amer. Math. Soc.189 (1974) 77-91. Zbl0292.12018MR330106
- [10] D. Hayes: Explicit class field theory in global function fields. G.C. Rota (ed.), Studies in Algebra and Number Theory. New York: Academic Press (1979) 173-217. Zbl0476.12010MR535766
- [11] D. Hayes: Analytic class number formulas in global function fields, Inventiones Math.65 (1981) 49-69. Zbl0491.12014MR636879
- [12] D. Hayes: Elliptic units in function fields, in Proc. of a Conference on Modern Developments Related to Fermat's Last Theorem, D. Goldfeld ed., Birkhauser, Boston (1982). Zbl0499.12012MR685307
- [13] H. Stark: L-functions at s = 1. IV. First derivatives at s = 0. Advances in Math.35 (1980) 197-235. Zbl0475.12018MR563924
- [14] J. Tate: Les conjectures de Stark sur les functions L d'Artin en s = 0, Birkhauser, Boston (1984). Zbl0545.12009MR782485
- [15] J. Tate: Brumer-Stark-Stickelberger, Séminaire de Théorie des Numbres, Université de Bordeaux (1980-81), exposé no. 24. Zbl0504.12005MR644657
- [16] J. Tate: On Stark's conjectures on the behavior of L(s, χ) at s = 0. Jour. Fac. Science, Univ. of Tokyo, 28 (1982), 963-978. Zbl0514.12013
Citations in EuDML Documents
top- Fei Xu, Jianqiang Zhao, Maximal independent systems of units in global function fields
- Hassan Oukhaba, Sign functions of imaginary quadratic fields and applications
- Ernst-Ulrich Gekeler, Méthodes analytiques rigides dans la théorie arithmétique des corps de fonctions
- Harald Niederreiter, Chaoping Xing, Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places
- Harald Niederreiter, Chaoping Xing, Drinfeld modules of rank 1 and algebraic curves with many rational points. II
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.