Gauss sums for O⁺(2n,q)
Acta Arithmetica (1996)
- Volume: 78, Issue: 1, page 75-89
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] L. Carlitz, Weighted quadratic partitions over a finite field, Canad. J. Math. 5 (1953), 317-323. Zbl0052.03805
- [2] L. Carlitz, Representations by quadratic forms in a finite field, Duke Math. J. 21 (1954), 123-137. Zbl0055.01301
- [3] L. E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Teubner, Leipzig, 1901. Zbl32.0128.01
- [4] J. H. Hodges, Exponential sums for symmetric matrices in a finite field, Math. Nachr. 14 (1955), 331-339. Zbl0072.00903
- [5] J. H. Hodges, Weighted partitions for symmetric matrices in a finite field, Math. Z. 66 (1956), 13-24. Zbl0080.01201
- [6] J. H. Hodges, Weighted partitions for general matrices over a finite field, Duke Math. J. 23 (1956), 545-552. Zbl0072.26702
- [7] J. H. Hodges, Weighted partitions for skew matrices over a finite field, Arch. Math. (Basel) 8 (1957), 16-22. Zbl0080.01202
- [8] J. H. Hodges, Weighted partitions for Hermitian matrices over a finite field, Math. Nachr. 17 (1958), 93-100. Zbl0084.04501
- [9] D. S. Kim, Gauss sums for O¯(2n,q), submitted. Zbl0937.11058
- [10] D. S. Kim, Gauss sums for O(2n+1,q), submitted. Zbl0937.11058
- [11] D. S. Kim, Gauss sums for symplectic groups over a finite field, submitted. Zbl1036.11529
- [12] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl. 20, Cambridge University Press, Cambridge, 1987.
- [13] F. J. MacWilliams, Orthogonal matrices over finite fields, Amer. Math. Monthly 76 (1969), 152-164. Zbl0186.33702
- [14] Z.-X. Wan, Geometry of Classical Groups over Finite Fields, Studentlitteratur, Lund, 1993. Zbl0817.51001