Exponential sums for symplectic groups and their applications

Dae San Kim

Acta Arithmetica (1999)

  • Volume: 88, Issue: 2, page 155-171
  • ISSN: 0065-1036

How to cite

top

Dae San Kim. "Exponential sums for symplectic groups and their applications." Acta Arithmetica 88.2 (1999): 155-171. <http://eudml.org/doc/207236>.

@article{DaeSanKim1999,
author = {Dae San Kim},
journal = {Acta Arithmetica},
keywords = {exponential sum; additive character; symplectic group; Bruhat decomposition; maximal parabolic subgroup; exponential sums; symplectic groups; multiple Kloosterman sums; Gauss sums; trace},
language = {eng},
number = {2},
pages = {155-171},
title = {Exponential sums for symplectic groups and their applications},
url = {http://eudml.org/doc/207236},
volume = {88},
year = {1999},
}

TY - JOUR
AU - Dae San Kim
TI - Exponential sums for symplectic groups and their applications
JO - Acta Arithmetica
PY - 1999
VL - 88
IS - 2
SP - 155
EP - 171
LA - eng
KW - exponential sum; additive character; symplectic group; Bruhat decomposition; maximal parabolic subgroup; exponential sums; symplectic groups; multiple Kloosterman sums; Gauss sums; trace
UR - http://eudml.org/doc/207236
ER -

References

top
  1. [1] B. C. Berndt and R. J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, J. Number Theory 11 (1979), 349-398. 
  2. [2] B. C. Berndt and R. J. Evans, Sums of Gauss, Eisenstein, Jacobi, and Jacobsthal, and Brewer, Illinois J. Math. 23 (1979), 374-437. 
  3. [3] B. C. Berndt and R. J. Evans, The determination of Gauss sums, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 107-129. Zbl0471.10028
  4. [4] L. Carlitz, Representation by skew forms in a finite field, Arch. Math. (Basel) 5 (1954), 19-31. Zbl0056.01702
  5. [5] J. H. Hodges, Exponential sums for skew matrices in a finite field, Arch. Math. 7 (1956), 116-121. Zbl0071.01702
  6. [6] J. H. Hodges, Weighted partitions for skew matrices over a finite field, Arch. Math. 8 (1957), 16-22. Zbl0080.01202
  7. [7] D. S. Kim, Gauss sums for general and special linear groups over a finite field, Arch. Math. 69 (1997), 297-304. Zbl1036.11528
  8. [8] D. S. Kim, Gauss sums for symplectic groups over a finite field, Monatsh. Math. 126 (1998), 55-71. Zbl1036.11529
  9. [9] D. S. Kim, Gauss sums for O¯(2n,q), Acta Arith. 80 (1997), 343-365. 
  10. [10] D. S. Kim, Gauss sums for O(2n+1,q), Finite Fields Appl. 4 (1998), 62-86. Zbl0937.11058
  11. [11] D. S. Kim, Gauss sums for U(2n,q²), Glasgow Math. J. 40 (1998), 79-95. Zbl0915.11061
  12. [12] D. S. Kim, Gauss sums for U(2n+1,q²), J. Korean Math. Soc. 34 (1997), 871-894 . Zbl1036.11527
  13. [13] D. S. Kim and I.-S. Lee, Gauss sums for O⁺(2n,q), Acta Arith. 78 (1996), 75-89. 
  14. [14] D. S. Kim and Y. H. Park, Gauss sums for orthogonal groups over a finite field of characteristic two, Acta Arith. 82 (1997), 331-357. 
  15. [15] D. H. and E. Lehmer, On the cubes of Kloosterman sums, Acta Arith. 6 (1960), 15-22. Zbl0092.04701
  16. [16] D. H. and E. Lehmer, The cyclotomy of Kloosterman sums, Acta Arith. 12 (1967), 385-407. Zbl0149.28603
  17. [17] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl. 20, Cambridge Univ. Press, Cambridge, 1987. 
  18. [18] H. Salié, Über die Kloostermanschen Summen S(u,v;q), Math. Z. 34 (1932), 91-109. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.