Optimal bounds for the length of rational Collatz cycles

Lorenz Halbeisen; Norbert Hungerbühler

Acta Arithmetica (1997)

  • Volume: 78, Issue: 3, page 227-239
  • ISSN: 0065-1036

How to cite

top

Lorenz Halbeisen, and Norbert Hungerbühler. "Optimal bounds for the length of rational Collatz cycles." Acta Arithmetica 78.3 (1997): 227-239. <http://eudml.org/doc/206944>.

@article{LorenzHalbeisen1997,
author = {Lorenz Halbeisen, Norbert Hungerbühler},
journal = {Acta Arithmetica},
keywords = {Collatz problem; problem; rational Collatz cycles; iteration; length},
language = {eng},
number = {3},
pages = {227-239},
title = {Optimal bounds for the length of rational Collatz cycles},
url = {http://eudml.org/doc/206944},
volume = {78},
year = {1997},
}

TY - JOUR
AU - Lorenz Halbeisen
AU - Norbert Hungerbühler
TI - Optimal bounds for the length of rational Collatz cycles
JO - Acta Arithmetica
PY - 1997
VL - 78
IS - 3
SP - 227
EP - 239
LA - eng
KW - Collatz problem; problem; rational Collatz cycles; iteration; length
UR - http://eudml.org/doc/206944
ER -

References

top
  1. [1] R. E. Crandall, On the 3x+1 problem, Math. Comp. 32 (1978), 1281-1292. Zbl0395.10013
  2. [2] J. M. Dolan, A. F. Gilman and S. Manickam, A generalization of Everett's result on the Collatz 3x+1 problem, Adv. in Appl. Math. 8 (1987), 405-409. Zbl0648.10009
  3. [3] S. Eliahou, The 3x+1 problem: New lower bounds on nontrivial cycle lengths, Discrete Math. 118 (1993), 45-56. Zbl0786.11012
  4. [4] I. Krasikov, How many numbers satisfy the 3x+1 conjecture ? Internat. J. Math. Sci. 12(4) (1989), 791-796. Zbl0685.10008
  5. [5] J. C. Lagarias, The 3x+1-problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-23. Zbl0566.10007
  6. [6] J. C. Lagarias, The set of rational cycles for the 3x+1 problem, Acta Arith. 56 (1990), 33-53. Zbl0773.11017
  7. [7] G. Leavens and M. Vermeulen, private communication. 
  8. [8] J. W. Sander, On the (3N+1)-conjecture, Acta Arith. 55 (1990), 241-248. Zbl0707.11017
  9. [9] B. G. Seifert, On the arithmetic of cycles for the Collatz-Hasse(Syracuse) conjectures, Discrete Math. 68 (1988), 293-298. Zbl0638.10003
  10. [10] G. Wirsching, An improved estimate concerning 3n+1 predecessor sets, Acta Arith. 63 (1993), 205-210. Zbl0804.11022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.