Computation of the Selmer groups of certain parametrized elliptic curves

S. Schmitt

Acta Arithmetica (1997)

  • Volume: 78, Issue: 3, page 241-254
  • ISSN: 0065-1036

How to cite

top

S. Schmitt. "Computation of the Selmer groups of certain parametrized elliptic curves." Acta Arithmetica 78.3 (1997): 241-254. <http://eudml.org/doc/206945>.

@article{S1997,
author = {S. Schmitt},
journal = {Acta Arithmetica},
keywords = {torsion groups; elliptic curves; sign of the functional equation; algorithm for computing the Selmer groups; 2-isogenies; generators of the Mordell-Weil groups},
language = {eng},
number = {3},
pages = {241-254},
title = {Computation of the Selmer groups of certain parametrized elliptic curves},
url = {http://eudml.org/doc/206945},
volume = {78},
year = {1997},
}

TY - JOUR
AU - S. Schmitt
TI - Computation of the Selmer groups of certain parametrized elliptic curves
JO - Acta Arithmetica
PY - 1997
VL - 78
IS - 3
SP - 241
EP - 254
LA - eng
KW - torsion groups; elliptic curves; sign of the functional equation; algorithm for computing the Selmer groups; 2-isogenies; generators of the Mordell-Weil groups
UR - http://eudml.org/doc/206945
ER -

References

top
  1. [MF IV] B. J. Birch and W. Kuyk, Modular Functions of One Variable IV, Lecture Notes in Math. 476, Springer, 1975. 
  2. [B-S] B. J. Birch and H. P. F. Swinnerton-Dyer, Elliptic curves and modular functions, in: Modular Functions of One Variable IV, Antwerpen 1972, Lecture Notes in Math. 476, Springer, 1975, 2-32. Zbl1214.11081
  3. [Fo] H. G. Folz, Ein Beschränktheitssatz für die Torsion von 2-defizienten elliptischen Kurven über algebraischen Zahlkörpern, Dissertation, Universität des Saarlandes, 1985. 
  4. [H-M] T. Honda and I. Miyawaki, Zeta-functions of elliptic curves of 2-power conductor, J. Math. Soc. Japan 26 (1974), 362-373. Zbl0273.14007
  5. [Ko] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, New York, 1984. Zbl0553.10019
  6. [Og] A. Ogg, Abelian curves over 2-power conductor, to appear. 
  7. [Sc] S. Schmitt, Berechnung der Mordell-Weil Gruppe parametrisierter elliptischer Kurven, Diplomarbeit, Universität des Saarlandes, 1995. 
  8. [Si] J. H. Silverman, The difference between the Weil height and the canonical height on elliptic curves, Math. Comp. 55 (1990), 723-743. Zbl0729.14026
  9. [Si-Ta] J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer, 1985. 
  10. [S-T] R. J. Stroeker and J. Top, On the equation Y² = (X+p)(X²+p²), Rocky Mountain J. Math. 27 (1994), 1135-1161. Zbl0810.11038
  11. [Ta] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, in: Modular Functions of One Variable IV, Antwerpen 1972, Lecture Notes in Math. 476, Springer, 1975, 33-52. 
  12. [We] E. Weiss, Algebraic Number Theory, McGraw-Hill, 1963. 
  13. [Zi] H. G. Zimmer, A limit formula for the canonical height of an elliptic curve and its application to height computations, in: Number Theory, R. Mollin (ed.), Proc. First Conf. Canad. Number Theory Assoc., Banff, 1988, de Gruyter, 1990, 641-659. Zbl0738.14020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.