Pascal's triangle (mod 9)

James G. Huard; Blair K. Spearman; Kenneth S. Williams

Acta Arithmetica (1997)

  • Volume: 78, Issue: 4, page 331-349
  • ISSN: 0065-1036

How to cite

top

James G. Huard, Blair K. Spearman, and Kenneth S. Williams. "Pascal's triangle (mod 9)." Acta Arithmetica 78.4 (1997): 331-349. <http://eudml.org/doc/206954>.

@article{JamesG1997,
author = {James G. Huard, Blair K. Spearman, Kenneth S. Williams},
journal = {Acta Arithmetica},
keywords = {binomial coefficients; congruences; Pascal triangle},
language = {eng},
number = {4},
pages = {331-349},
title = {Pascal's triangle (mod 9)},
url = {http://eudml.org/doc/206954},
volume = {78},
year = {1997},
}

TY - JOUR
AU - James G. Huard
AU - Blair K. Spearman
AU - Kenneth S. Williams
TI - Pascal's triangle (mod 9)
JO - Acta Arithmetica
PY - 1997
VL - 78
IS - 4
SP - 331
EP - 349
LA - eng
KW - binomial coefficients; congruences; Pascal triangle
UR - http://eudml.org/doc/206954
ER -

References

top
  1. [1] K. S. Davis and W. A. Webb, Lucas' theorem for prime powers, European J. Combin. 11 (1990), 229-233. Zbl0704.11002
  2. [2] K. S. Davis and W. A. Webb, Pascal's triangle modulo 4, Fibonacci Quart. 29 (1991), 79-83. Zbl0732.11009
  3. [3] J. W. L. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quart. J. Math. 30 (1899), 150-156. Zbl29.0152.03
  4. [4] A. Granville, Zaphod Beeblebrox's brain and the fifty-ninth row of Pascal's triangle, Amer. Math. Monthly 99 (1992), 318-331. Zbl0757.05003
  5. [5] E. Hexel and H. Sachs, Counting residues modulo a prime in Pascal's triangle, Indian J. Math. 20 (1978), 91-105. Zbl0499.10005
  6. [6] J. G. Huard, B. K. Spearman and K. S. Williams, Pascal's triangle (mod 8), submitted for publication. 
  7. [7] G. S. Kazandzidis, Congruences on the binomial coefficients, Bull. Soc. Math. Grèce (NS) 9 (1968), 1-12. 
  8. [8] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146. 
  9. [9] E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1877-8), 49-54. 
  10. [10] W. A. Webb, The number of binomial coefficients in residue classes modulo p and p², Colloq. Math. 60/61 (1990), 275-280. Zbl0734.11018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.