Distribution of integer partitions with large number of summands

Hsien-Kuei Hwang

Acta Arithmetica (1997)

  • Volume: 78, Issue: 4, page 351-365
  • ISSN: 0065-1036

How to cite

top

Hsien-Kuei Hwang. "Distribution of integer partitions with large number of summands." Acta Arithmetica 78.4 (1997): 351-365. <http://eudml.org/doc/206955>.

@article{Hsien1997,
author = {Hsien-Kuei Hwang},
journal = {Acta Arithmetica},
keywords = {Mellin transforms; saddle-point method; asymptotic behavior; number of integer partitions; large number of summands; sieve of Eratosthenes; partitions into parts; limit distribution; number of summands in random partitions},
language = {eng},
number = {4},
pages = {351-365},
title = {Distribution of integer partitions with large number of summands},
url = {http://eudml.org/doc/206955},
volume = {78},
year = {1997},
}

TY - JOUR
AU - Hsien-Kuei Hwang
TI - Distribution of integer partitions with large number of summands
JO - Acta Arithmetica
PY - 1997
VL - 78
IS - 4
SP - 351
EP - 365
LA - eng
KW - Mellin transforms; saddle-point method; asymptotic behavior; number of integer partitions; large number of summands; sieve of Eratosthenes; partitions into parts; limit distribution; number of summands in random partitions
UR - http://eudml.org/doc/206955
ER -

References

top
  1. [1] G. E. Andrews, The Theory of Partitions, Encyclopedia Math. Appl. 2, Addison-Wesley, 1976. 
  2. [2] F. C. Auluck, S. Chowla and H. Gupta, On the maximum value of the number of partitions of n into k parts, J. Indian Math. Soc. 6 (1942), 105-112. Zbl0063.00139
  3. [3] N. G. de Bruijn, On Mahler's partition problem, Indag. Math. 10 (1948), 210-220. Zbl0030.34502
  4. [4] J. Dixmier et J.-L. Nicolas, Partitions sans petits sommants, in: A Tribute to Paul Erdős, A. Baker, B. Bollobás and A. Hajnal (eds.), Cambridge University Press, 1990, 120-152. Zbl0719.11067
  5. [5] P. Erdős and J. Lehner, The distribution of the number of summands in the partitions of a positive integer, Duke Math. J. 8 (1941), 335-345. Zbl0025.10703
  6. [6] P. Flajolet, X. Gourdon and P. Dumas, Mellin transforms and asymptotics: harmonic sums, Theoret. Comput. Sci. 144 (1995), 3-58. Zbl0869.68057
  7. [7] B. Fristedt, The structure of random partitions of large integers, Trans. Amer. Math. Soc. 337 (1993), 703-735. Zbl0795.05009
  8. [8] C. B. Haselgrove and H. N. V. Temperley, Asymptotic formulae in the theory of partitions, Proc. Cambridge Philos. Soc. 50 (1954), 225-241. Zbl0055.27401
  9. [9] H.-K. Hwang, Limit theorems for the number of summands in integer partitions, submitted. 
  10. [10] H.-K. Hwang, Sur la répartition des valeurs des fonctions arithmétiques, I. Le nombre de facteurs premiers d'un entier, submitted. 
  11. [11] H.-K. Hwang and Y.-N. Yeh, Distribution of integer partitions with a small number of summands, in preparation. 
  12. [12] D. V. Lee, The asymptotic distribution of the number of summands in unrestricted Λ-partitions, Acta Arith. 65 (1993), 29-43. 
  13. [13] G. Meinardus, Asymptotische Aussagen über Partitionen, Math. Z. 59 (1954), 388-398. Zbl0055.03806
  14. [14] W. Narkiewicz, Number Theory, World Scientific, Singapore, 1983 (translated by S. Kanemitsu). 
  15. [15] J.-L. Nicolas, Sur la distribution des nombres ayant une quantité fixée de facteurs premiers, Acta Arith. 44 (1984), 191-200. Zbl0512.10034
  16. [16] W. B. Pennington, On Mahler's partition problem, Ann. of Math. 57 (1953), 531-546. Zbl0050.04005
  17. [17] L. B. Richmond, The moments of partitions, I, Acta Arith. 26 (1975), 411-425. Zbl0314.10036
  18. [18] L. B. Richmond, Mahler's partition problem, Ars Combin. 2 (1976), 169-189. Zbl0347.10039
  19. [19] L. B. Richmond, The moments of partitions, II, Acta Arith. 28 (1975), 229-243. Zbl0318.10034
  20. [20] L. B. Richmond, Some general problems on the number of parts in partitions, Acta Arith. 66 (1994), 297-313. Zbl0823.11059
  21. [21] W. Schwarz, Einige Anwendungen Tauberscher Sätze in der Zahlentheorie. C. Mahler's Partitionsproblem, J. Reine Angew. Math. 228 (1967), 182-188 Zbl0156.27704
  22. [22] M. Szalay and P. Turán, On some problems of the statistical theory of partitions with application to characters of the symmetric group I, Acta Math. Acad. Sci. Hungar. 29 (1977), 361-379. Zbl0371.10033
  23. [23] M. Szalay and P. Turán, On some problems of the statistical theory of partitions with application to characters of the symmetric group II, Acta Math. Acad. Sci. Hungar., 381-392. Zbl0371.10034
  24. [24] G. Szekeres, Some asymptotic formulae in the theory of partitions II, Quart. J. Math. Oxford 4 (1953), 96-111. Zbl0050.04101
  25. [25] G. Szekeres, Asymptotic distribution of partitions by number and size of parts, in: Number Theory, Colloq. Math. Soc. János Bolyai 51, North-Holland, 1987, 527-538. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.