Valeurs en s=1 de fonctions L
Acta Arithmetica (1997)
- Volume: 78, Issue: 4, page 367-376
- ISSN: 0065-1036
Access Full Article
topHow to cite
topMichel Pestour. "Valeurs en s=1 de fonctions L." Acta Arithmetica 78.4 (1997): 367-376. <http://eudml.org/doc/206956>.
@article{MichelPestour1997,
author = {Michel Pestour},
journal = {Acta Arithmetica},
keywords = {abelian extension of a totally real number field; Colmez variant; -function; variant of Shintani's decomposition; quadratic real field},
language = {fre},
number = {4},
pages = {367-376},
title = {Valeurs en s=1 de fonctions L},
url = {http://eudml.org/doc/206956},
volume = {78},
year = {1997},
}
TY - JOUR
AU - Michel Pestour
TI - Valeurs en s=1 de fonctions L
JO - Acta Arithmetica
PY - 1997
VL - 78
IS - 4
SP - 367
EP - 376
LA - fre
KW - abelian extension of a totally real number field; Colmez variant; -function; variant of Shintani's decomposition; quadratic real field
UR - http://eudml.org/doc/206956
ER -
References
top- [CN] P. Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques, Invent. Math. 51 (1979), 29-59.
- [C-S] J. Coates and W. Sinnott, On p-adic L-functions over real quadratic fields, Invent. Math. 25 (1974), 253-279. Zbl0305.12008
- [C] P. Colmez, Résidu en s=1 des fonctions zêta p-adiques, Invent. Math. 91 (1988), 371-389. Zbl0651.12010
- [D] J. Dieudonné, Calcul infinitésimal, Hermann, Paris, 1968. Zbl0155.10001
- [K] N. Katz, Another look at p-adic L-functions for totally real fields, Math. Ann. 255 (1981), 33-43. Zbl0497.14006
- [L] S. Lang, Algebraic Number Theory, Addison-Wesley, 1970. Zbl0211.38404
- [N] A. P. Novikov, Kronecker's limit formula in a real quadratic field, Math. USSR-Izv. 17 (1981), 147-176. Zbl0467.12012
- [P] G. Pólya and G. Szegő, Problems and Theorems in Analysis I, Springer, Berlin, 1972. Zbl0236.00003
- [Sc] R. Sczech, Eisenstein cocycles for GL₂ℚ and values of L-functions in real quadratic fields, Comment. Math. Helv. 67 (1992), 363-382. Zbl0776.11021
- [S1] T. Shintani, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 167-199. Zbl0364.12012
- [S2] T. Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), 393-417. Zbl0349.12007
- [Si] C.-L. Siegel, Lectures on Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1961.
- [T] J. Tate, Les conjectures de Stark sur les fonctions L d'Artin en s=0, Birkhäuser, Boston, 1984.
- [W] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge (reprinted), 1963. Zbl0108.26903
- [Z] D. Zagier, A Kronecker limit formula for real quadratic fields, Math. Ann. 213 (1975), 153-184 Zbl0283.12004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.