Valeurs en s=1 de fonctions L

Michel Pestour

Acta Arithmetica (1997)

  • Volume: 78, Issue: 4, page 367-376
  • ISSN: 0065-1036

How to cite

top

Michel Pestour. "Valeurs en s=1 de fonctions L." Acta Arithmetica 78.4 (1997): 367-376. <http://eudml.org/doc/206956>.

@article{MichelPestour1997,
author = {Michel Pestour},
journal = {Acta Arithmetica},
keywords = {abelian extension of a totally real number field; Colmez variant; -function; variant of Shintani's decomposition; quadratic real field},
language = {fre},
number = {4},
pages = {367-376},
title = {Valeurs en s=1 de fonctions L},
url = {http://eudml.org/doc/206956},
volume = {78},
year = {1997},
}

TY - JOUR
AU - Michel Pestour
TI - Valeurs en s=1 de fonctions L
JO - Acta Arithmetica
PY - 1997
VL - 78
IS - 4
SP - 367
EP - 376
LA - fre
KW - abelian extension of a totally real number field; Colmez variant; -function; variant of Shintani's decomposition; quadratic real field
UR - http://eudml.org/doc/206956
ER -

References

top
  1. [CN] P. Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques, Invent. Math. 51 (1979), 29-59. 
  2. [C-S] J. Coates and W. Sinnott, On p-adic L-functions over real quadratic fields, Invent. Math. 25 (1974), 253-279. Zbl0305.12008
  3. [C] P. Colmez, Résidu en s=1 des fonctions zêta p-adiques, Invent. Math. 91 (1988), 371-389. Zbl0651.12010
  4. [D] J. Dieudonné, Calcul infinitésimal, Hermann, Paris, 1968. Zbl0155.10001
  5. [K] N. Katz, Another look at p-adic L-functions for totally real fields, Math. Ann. 255 (1981), 33-43. Zbl0497.14006
  6. [L] S. Lang, Algebraic Number Theory, Addison-Wesley, 1970. Zbl0211.38404
  7. [N] A. P. Novikov, Kronecker's limit formula in a real quadratic field, Math. USSR-Izv. 17 (1981), 147-176. Zbl0467.12012
  8. [P] G. Pólya and G. Szegő, Problems and Theorems in Analysis I, Springer, Berlin, 1972. Zbl0236.00003
  9. [Sc] R. Sczech, Eisenstein cocycles for GL₂ℚ and values of L-functions in real quadratic fields, Comment. Math. Helv. 67 (1992), 363-382. Zbl0776.11021
  10. [S1] T. Shintani, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 167-199. Zbl0364.12012
  11. [S2] T. Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), 393-417. Zbl0349.12007
  12. [Si] C.-L. Siegel, Lectures on Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1961. 
  13. [T] J. Tate, Les conjectures de Stark sur les fonctions L d'Artin en s=0, Birkhäuser, Boston, 1984. 
  14. [W] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge (reprinted), 1963. Zbl0108.26903
  15. [Z] D. Zagier, A Kronecker limit formula for real quadratic fields, Math. Ann. 213 (1975), 153-184 Zbl0283.12004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.