Gaussian primes

Etienne Fouvry; Henryk Iwaniec

Acta Arithmetica (1997)

  • Volume: 79, Issue: 3, page 249-287
  • ISSN: 0065-1036

How to cite

top

Etienne Fouvry, and Henryk Iwaniec. "Gaussian primes." Acta Arithmetica 79.3 (1997): 249-287. <http://eudml.org/doc/206979>.

@article{EtienneFouvry1997,
author = {Etienne Fouvry, Henryk Iwaniec},
journal = {Acta Arithmetica},
keywords = {prime; Gaussian prime; sieve; estimates for bilinear forms},
language = {eng},
number = {3},
pages = {249-287},
title = {Gaussian primes},
url = {http://eudml.org/doc/206979},
volume = {79},
year = {1997},
}

TY - JOUR
AU - Etienne Fouvry
AU - Henryk Iwaniec
TI - Gaussian primes
JO - Acta Arithmetica
PY - 1997
VL - 79
IS - 3
SP - 249
EP - 287
LA - eng
KW - prime; Gaussian prime; sieve; estimates for bilinear forms
UR - http://eudml.org/doc/206979
ER -

References

top
  1. [B1] E. Bombieri, On twin almost primes, Acta Arith. 28 (1975), 177-193; Acta Arith. 28 (1976), 457-461. Zbl0319.10051
  2. [B2] E. Bombieri, The asymptotic sieve, Rend. Accad. Naz. XL (5), 1/2 (1975/76). 
  3. [C] M. Coleman, The Rosser-Iwaniec sieve in number fields, with an application, Acta Arith. 65 (1993), 53-83. Zbl0784.11047
  4. [DH] H. Davenport and H. Halberstam, The values of a trigonometric polynomial at well spaced points, Mathematika 13 (1966), 91-96. Zbl0171.00902
  5. [D] W. Duke, Some problems in multidimensional analytic number theory, Acta Arith. 52 (1989), 203-228. Zbl0631.12008
  6. [DFI] W. Duke, J. Friedlander and H. Iwaniec, Equidistribution of roots of a quadratic congruence to prime moduli, Ann. of Math. 141 (1995), 423-441. Zbl0840.11003
  7. [F] E. Fogels, On the zeros of Hecke's L-functions I, II, III, Acta Arith. 7 (1962), 87-106, 131-147, 225-240. Zbl0100.03801
  8. [FI] J. Friedlander and H. Iwaniec, Bombieri's sieve, in: Analytic Number Theory, Proceedings of a Conference in Honor of Heini Halberstam, Progr. Math. 138, Birkhäuser, 1996, 411-430. Zbl0862.11052
  9. [GR] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, London, 1965. 
  10. [H] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen II, Math. Z. 6 (1920), 11-51. 
  11. [IR] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed., Springer, 1982. Zbl0482.10001
  12. [I] H. Iwaniec, Rosser's sieve, Acta Arith. 36 (1980), 171-202. Zbl0435.10029
  13. [J] E. Jacobsthal, Über die Darstellung der Primzahlen der Form 4n+1 als Summe zweier Quadrate, J. Reine Angew. Math. 132 (1907), 238-245. 
  14. [K] J. P. Kubilius, On some problems in geometry of prime numbers, Mat. Sb. 31 (73) (1952), 507-542 (in Russian). Zbl0049.03301
  15. [MV] H. L. Montgomery and R. C. Vaughan, Hilbert's inequality, J. London Math. Soc. (2) 8 (1974), 73-82. Zbl0281.10021
  16. [P] J. Pomykała, Cubic norms represented by quadratic sequences, Colloq. Math. 66 (1994), 283-297. Zbl0814.11044
  17. [R] G. J. Rieger, Über die Summe aus einem Quadrat und einem Primzahlquadrat, J. Reine Angew. Math. 231 (1968), 89-100. Zbl0164.05004
  18. [S] A. Selberg, Lectures on Sieves, Collected Papers, Vol. II, Springer, 1991. 
  19. [V] R. C. Vaughan, Mean value theorems in prime number theory, J. London Math. Soc. 10 (1975), 153-162. Zbl0314.10028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.