The Rosser-Iwaniec sieve in number fields, with an application

M. D. Coleman

Acta Arithmetica (1993)

  • Volume: 65, Issue: 1, page 53-83
  • ISSN: 0065-1036

How to cite

top

M. D. Coleman. "The Rosser-Iwaniec sieve in number fields, with an application." Acta Arithmetica 65.1 (1993): 53-83. <http://eudml.org/doc/206563>.

@article{M1993,
author = {M. D. Coleman},
journal = {Acta Arithmetica},
keywords = {Rosser-Iwaniec sieve; algebraic number fields; imaginary quadratic field; distribution of prime ideals},
language = {eng},
number = {1},
pages = {53-83},
title = {The Rosser-Iwaniec sieve in number fields, with an application},
url = {http://eudml.org/doc/206563},
volume = {65},
year = {1993},
}

TY - JOUR
AU - M. D. Coleman
TI - The Rosser-Iwaniec sieve in number fields, with an application
JO - Acta Arithmetica
PY - 1993
VL - 65
IS - 1
SP - 53
EP - 83
LA - eng
KW - Rosser-Iwaniec sieve; algebraic number fields; imaginary quadratic field; distribution of prime ideals
UR - http://eudml.org/doc/206563
ER -

References

top
  1. [1] N. C. Ankeny, Representations of primes by quadratic forms, Amer. J. Math. 74 (1952), 913-919. Zbl0047.27501
  2. [2] K. Bulota, On Hecke Z-functions and the distribution of the prime numbers of an imaginary quadratic field, Litovsk. Mat. Sb. 4 (1964), 309-328 (in Russian). Zbl0152.03501
  3. [3] M. D. Coleman, The distribution of points at which binary quadratic forms are prime, Proc. London Math. Soc. (3) 61 (1990), 433-456. Zbl0712.11065
  4. [4] M. D. Coleman, A zero-free region for the Hecke L-functions, Mathematika 37 (1990), 287-304. Zbl0721.11050
  5. [5] M. D. Coleman, The distribution of points at which norm-forms are prime, J. Number Theory 41 (1992), 359-378. Zbl0760.11035
  6. [6] P. X. Gallagher, A large sieve density estimate near σ = 1, Invent. Math. 11 (1970), 329-339. Zbl0219.10048
  7. [7] H. Halberstam and H. E. Richert, Sieve Methods, Academic Press, London, 1974. Zbl0298.10026
  8. [8] D. R. Heath-Brown and H. Iwaniec, On the differences between consecutive primes, Invent. Math. 55 (1979), 49-69. Zbl0424.10028
  9. [9] D. R. Heath-Brown and S. J. Patterson, The distribution of Kummer sums at prime arguments, J. Reine Angew. Math. 310 (1979), 111-130. Zbl0412.10028
  10. [10] E. Hecke, Eine neue Art von Zeta Functionen und ihre Beziehungen zur Verteilung der Primzahlen, I, II, Math. Z. 1 (1918), 357-376; 6 (1920), 11-51. Zbl46.0258.01
  11. [11] J. G. Hinz, A generalization of Bombieri's prime number theorem to algebraic number fields, Acta Arith. 51 (1988), 173-193. Zbl0605.10023
  12. [12] J. G. Hinz, Chen's theorem in totally real algebraic number fields, Acta Arith. 58 (1991), 335-361. Zbl0744.11046
  13. [13] H. Iwaniec, Rosser's sieve, Acta Arith. 36 (1980), 171-202. 
  14. [14] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320. Zbl0444.10038
  15. [15] H. Iwaniec and M. Jutila, Primes in short intervals, Ark. Mat. 17 (1979), 167-176. Zbl0408.10029
  16. [16] D. Johnson, Mean values of Hecke L-functions, J. Reine Angew. Math. 305 (1979), 195-205. Zbl0392.10042
  17. [17] W. B. Jurkat and H.-E. Richert, An improvement of Selberg's sieve method, I, Acta Arith. 11 (1965), 217-240. Zbl0128.26902
  18. [18] R. M. Kaufman, Estimate of the Hecke L-function on the half-line, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 91 (1979), 40-51 (in Russian). Zbl0451.12007
  19. [19] F. B. Koval'chik, Density theorems and the distribution of primes in sectors and progressions, Dokl. Akad. Nauk SSSR (N.S.) 219 (1974), 31-34 (in Russian). 
  20. [20] J. P. Kubilius, The decomposition of prime numbers into two squares, Dokl. Akad. Nauk SSSR (N.S.) 77 (1951), 791-794 (in Russian). Zbl0042.27102
  21. [21] J. P. Kubilius, On some problems of the geometry of prime numbers, Mat. Sb. (N.S.) 31 (1952), 507-542 (in Russian). Zbl0049.03301
  22. [22] J. P. Kubilius, On a problem in the n-dimensional analytic theory of numbers, Viliniaus Valst. Univ. Mokslo dardai Fiz. Chem. Moksly Ser. 4 (1955), 5-43. 
  23. [23] T. Mitsui, Generalised prime number theorem, Japan. J. Math. 26 (1956), 1-42. Zbl0126.27503
  24. [24] R. W. K. Odoni, The distribution of integral and prime-integral values of systems of full-norm polynomials and affine-decomposable polynomials, Mathematika 26 (1979), 80-87. Zbl0444.12008
  25. [25] K. Ramachandra, A simple proof of the mean fourth power estimate for ζ(1/2+it) and L(1/2+it,χ), Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1 (1974), 81-97. 
  26. [26] S. Ricci, Local distribution of primes, Ph.D. thesis, University of Michigan, 1976. 
  27. [27] H.-E. Richert, Selberg's sieve with weights, Mathematika 16 (1969), 1-22. Zbl0192.39703
  28. [28] G. J. Rieger, Verallgemeinerung der Siebmethode von A. Selberg auf algebraische Zahlkörper III, J. Reine Angew. Math. 208 (1961), 79-90. 
  29. [29] W. Schaal, Obere und untere Abschätzungen in algebraischen Zahlkörpern mit Hilfe des linearen Selbergschen Siebes, Acta Arith. 13 (1968), 267-313. Zbl0155.09702
  30. [30] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, Oxford University Press, 1951. Zbl0042.07901
  31. [31] R. C. Vaughan, An elementary method in prime number theory, Acta Arith. 37 (1980), 111-115 Zbl0448.10037

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.