The Rosser-Iwaniec sieve in number fields, with an application
Acta Arithmetica (1993)
- Volume: 65, Issue: 1, page 53-83
- ISSN: 0065-1036
Access Full Article
topHow to cite
topM. D. Coleman. "The Rosser-Iwaniec sieve in number fields, with an application." Acta Arithmetica 65.1 (1993): 53-83. <http://eudml.org/doc/206563>.
@article{M1993,
author = {M. D. Coleman},
journal = {Acta Arithmetica},
keywords = {Rosser-Iwaniec sieve; algebraic number fields; imaginary quadratic field; distribution of prime ideals},
language = {eng},
number = {1},
pages = {53-83},
title = {The Rosser-Iwaniec sieve in number fields, with an application},
url = {http://eudml.org/doc/206563},
volume = {65},
year = {1993},
}
TY - JOUR
AU - M. D. Coleman
TI - The Rosser-Iwaniec sieve in number fields, with an application
JO - Acta Arithmetica
PY - 1993
VL - 65
IS - 1
SP - 53
EP - 83
LA - eng
KW - Rosser-Iwaniec sieve; algebraic number fields; imaginary quadratic field; distribution of prime ideals
UR - http://eudml.org/doc/206563
ER -
References
top- [1] N. C. Ankeny, Representations of primes by quadratic forms, Amer. J. Math. 74 (1952), 913-919. Zbl0047.27501
- [2] K. Bulota, On Hecke Z-functions and the distribution of the prime numbers of an imaginary quadratic field, Litovsk. Mat. Sb. 4 (1964), 309-328 (in Russian). Zbl0152.03501
- [3] M. D. Coleman, The distribution of points at which binary quadratic forms are prime, Proc. London Math. Soc. (3) 61 (1990), 433-456. Zbl0712.11065
- [4] M. D. Coleman, A zero-free region for the Hecke L-functions, Mathematika 37 (1990), 287-304. Zbl0721.11050
- [5] M. D. Coleman, The distribution of points at which norm-forms are prime, J. Number Theory 41 (1992), 359-378. Zbl0760.11035
- [6] P. X. Gallagher, A large sieve density estimate near σ = 1, Invent. Math. 11 (1970), 329-339. Zbl0219.10048
- [7] H. Halberstam and H. E. Richert, Sieve Methods, Academic Press, London, 1974. Zbl0298.10026
- [8] D. R. Heath-Brown and H. Iwaniec, On the differences between consecutive primes, Invent. Math. 55 (1979), 49-69. Zbl0424.10028
- [9] D. R. Heath-Brown and S. J. Patterson, The distribution of Kummer sums at prime arguments, J. Reine Angew. Math. 310 (1979), 111-130. Zbl0412.10028
- [10] E. Hecke, Eine neue Art von Zeta Functionen und ihre Beziehungen zur Verteilung der Primzahlen, I, II, Math. Z. 1 (1918), 357-376; 6 (1920), 11-51. Zbl46.0258.01
- [11] J. G. Hinz, A generalization of Bombieri's prime number theorem to algebraic number fields, Acta Arith. 51 (1988), 173-193. Zbl0605.10023
- [12] J. G. Hinz, Chen's theorem in totally real algebraic number fields, Acta Arith. 58 (1991), 335-361. Zbl0744.11046
- [13] H. Iwaniec, Rosser's sieve, Acta Arith. 36 (1980), 171-202.
- [14] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320. Zbl0444.10038
- [15] H. Iwaniec and M. Jutila, Primes in short intervals, Ark. Mat. 17 (1979), 167-176. Zbl0408.10029
- [16] D. Johnson, Mean values of Hecke L-functions, J. Reine Angew. Math. 305 (1979), 195-205. Zbl0392.10042
- [17] W. B. Jurkat and H.-E. Richert, An improvement of Selberg's sieve method, I, Acta Arith. 11 (1965), 217-240. Zbl0128.26902
- [18] R. M. Kaufman, Estimate of the Hecke L-function on the half-line, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 91 (1979), 40-51 (in Russian). Zbl0451.12007
- [19] F. B. Koval'chik, Density theorems and the distribution of primes in sectors and progressions, Dokl. Akad. Nauk SSSR (N.S.) 219 (1974), 31-34 (in Russian).
- [20] J. P. Kubilius, The decomposition of prime numbers into two squares, Dokl. Akad. Nauk SSSR (N.S.) 77 (1951), 791-794 (in Russian). Zbl0042.27102
- [21] J. P. Kubilius, On some problems of the geometry of prime numbers, Mat. Sb. (N.S.) 31 (1952), 507-542 (in Russian). Zbl0049.03301
- [22] J. P. Kubilius, On a problem in the n-dimensional analytic theory of numbers, Viliniaus Valst. Univ. Mokslo dardai Fiz. Chem. Moksly Ser. 4 (1955), 5-43.
- [23] T. Mitsui, Generalised prime number theorem, Japan. J. Math. 26 (1956), 1-42. Zbl0126.27503
- [24] R. W. K. Odoni, The distribution of integral and prime-integral values of systems of full-norm polynomials and affine-decomposable polynomials, Mathematika 26 (1979), 80-87. Zbl0444.12008
- [25] K. Ramachandra, A simple proof of the mean fourth power estimate for ζ(1/2+it) and L(1/2+it,χ), Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1 (1974), 81-97.
- [26] S. Ricci, Local distribution of primes, Ph.D. thesis, University of Michigan, 1976.
- [27] H.-E. Richert, Selberg's sieve with weights, Mathematika 16 (1969), 1-22. Zbl0192.39703
- [28] G. J. Rieger, Verallgemeinerung der Siebmethode von A. Selberg auf algebraische Zahlkörper III, J. Reine Angew. Math. 208 (1961), 79-90.
- [29] W. Schaal, Obere und untere Abschätzungen in algebraischen Zahlkörpern mit Hilfe des linearen Selbergschen Siebes, Acta Arith. 13 (1968), 267-313. Zbl0155.09702
- [30] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, Oxford University Press, 1951. Zbl0042.07901
- [31] R. C. Vaughan, An elementary method in prime number theory, Acta Arith. 37 (1980), 111-115 Zbl0448.10037
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.