A generalization of Perron's theorem about Hurwitzian numbers

Pierre Stambul

Acta Arithmetica (1997)

  • Volume: 80, Issue: 2, page 141-148
  • ISSN: 0065-1036

How to cite

top

Pierre Stambul. "A generalization of Perron's theorem about Hurwitzian numbers." Acta Arithmetica 80.2 (1997): 141-148. <http://eudml.org/doc/207033>.

@article{PierreStambul1997,
author = {Pierre Stambul},
journal = {Acta Arithmetica},
keywords = {Perron's theorem; Hurwitzian numbers; Möbius transformation; irrational numbers; continued fraction expansion},
language = {eng},
number = {2},
pages = {141-148},
title = {A generalization of Perron's theorem about Hurwitzian numbers},
url = {http://eudml.org/doc/207033},
volume = {80},
year = {1997},
}

TY - JOUR
AU - Pierre Stambul
TI - A generalization of Perron's theorem about Hurwitzian numbers
JO - Acta Arithmetica
PY - 1997
VL - 80
IS - 2
SP - 141
EP - 148
LA - eng
KW - Perron's theorem; Hurwitzian numbers; Möbius transformation; irrational numbers; continued fraction expansion
UR - http://eudml.org/doc/207033
ER -

References

top
  1. [1] H. Cabannes, Étude des fractions continues ayant leurs quotients en progression arithmétique ou en progression géométrique, La Revue Scientifique 83 (1945), 230-233. Zbl0060.16201
  2. [2] C. S. Davis, On some simple continued fractions connected with e, J. London Math. Soc. 20 (1945), 194-198. Zbl0060.16111
  3. [3] L. Euler, De fractionibus continuis dissertatio, Comment. Acad. Petropol. 9 (1744), 115-127. 
  4. [4] D. H. Lehmer, Continued fractions containing arithmetic progressions, Scripta Math. 29 (1973), 17-24. Zbl0263.10012
  5. [5] P. Liardet et P. Stambul, Transducteurs et fractions continuées, preprint, 1996. 
  6. [6] K. R. Matthews and R. F. C. Walters, Some properties of the continued fraction expansion of m / n e 1 / q , Proc. Cambridge Philos. Soc. 67 (1970), 67-74. Zbl0188.10703
  7. [7] O. Perron, Die Lehre von den Kettenbrüchen, Bd. 1, 3rd ed., Teubner, 1954, 110-138. 
  8. [8] A. J. van der Poorten, An introduction to continued fractions, in: J. H. Loxton and A. J. van der Poorten (eds.), Diophantine Analysis, Cambridge University Press, 1986, 99-138. Zbl0596.10008
  9. [9] G. Raney, On continued fractions and finite automata, Math. Ann. 206 (1973), 265-283. Zbl0251.10024
  10. [10] P. Stambul, Contribution à l'étude des propriétés arithmétiques des fractions continuées, Thèse de l'Université de Provence, 1994 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.