On the diophantine equation
Acta Arithmetica (1997)
- Volume: 80, Issue: 3, page 289-295
- ISSN: 0065-1036
Access Full Article
topAbstract
topHow to cite
topK. Győry. "On the diophantine equation ${n \atopwithdelims ()k} = x^l$." Acta Arithmetica 80.3 (1997): 289-295. <http://eudml.org/doc/207044>.
@article{K1997,
abstract = {P. 294, line 14: For “Satz 8” read “Satz 7”, and for “equation (10)” read “equation (13)”.},
author = {K. Győry},
journal = {Acta Arithmetica},
keywords = {exponential diophantine equations; binomial coefficients; linear forms in logarithms},
language = {eng},
number = {3},
pages = {289-295},
title = {On the diophantine equation $\{n \atopwithdelims ()k\} = x^l$},
url = {http://eudml.org/doc/207044},
volume = {80},
year = {1997},
}
TY - JOUR
AU - K. Győry
TI - On the diophantine equation ${n \atopwithdelims ()k} = x^l$
JO - Acta Arithmetica
PY - 1997
VL - 80
IS - 3
SP - 289
EP - 295
AB - P. 294, line 14: For “Satz 8” read “Satz 7”, and for “equation (10)” read “equation (13)”.
LA - eng
KW - exponential diophantine equations; binomial coefficients; linear forms in logarithms
UR - http://eudml.org/doc/207044
ER -
References
top- [1] M. A. Bennett and B. M. M. de Weger, On the Diophantine equation , to appear.
- [2] H. Darmon and L. Merel, Winding quotients and some variants of Fermat's Last Theorem, to appear. Zbl0976.11017
- [3] P. Dénes, Über die diophantische Gleichung , Acta Math. 88 (1952), 241-251.
- [4] L. E. Dickson, History of the Theory of Numbers, Vol. II, reprinted by Chelsea, New York, 1971.
- [5] P. Erdős, Note on the product of consecutive integers (II), J. London Math. Soc. 14 (1939), 245-249. Zbl65.1145.01
- [6] P. Erdős, On a diophantine equation, J. London Math. Soc. 26 (1951), 176-178. Zbl0043.04309
- [7] P. Erdős and J. Surányi, Selected Topics in Number Theory, 2nd ed., Szeged, 1996 (in Hungarian). Zbl0095.02904
- [8] K. Győry, On the diophantine equations and , Mat. Lapok 14 (1963), 322-329 (in Hungarian).
- [9] K. Győry, Über die diophantische Gleichung , Publ. Math. Debrecen 13 (1966), 301-305. Zbl0171.29703
- [10] K. Győry, Contributions to the theory of diophantine equations, Ph.D. Thesis, Debrecen, 1966 (in Hungarian).
- [11] E. Landau, Vorlesungen über Zahlentheorie, III, Leipzig, 1927.
- [12] S. Lubelski, Studien über den grossen Fermatschen Satz, Prace Mat.-Fiz. 42 (1935), 11-44. Zbl0011.14802
- [13] R. Obláth, Note on the binomial coefficients, J. London Math. Soc. 23 (1948), 252-253. Zbl0033.24903
- [14] P. Ribenboim, The Little Book of Big Primes, Springer, 1991. Zbl0734.11001
- [15] N. Terai, On a Diophantine equation of Erdős, Proc. Japan Acad. Ser. A 70 (1994), 213-217. Zbl0821.11022
- [16] R. Tijdeman, Applications of the Gelfond-Baker method to rational number theory, in: Topics in Number Theory, North-Holland, 1976, 399-416.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.