On the diophantine equation n k = x l

K. Győry

Acta Arithmetica (1997)

  • Volume: 80, Issue: 3, page 289-295
  • ISSN: 0065-1036

Abstract

top
P. 294, line 14: For “Satz 8” read “Satz 7”, and for “equation (10)” read “equation (13)”.

How to cite

top

K. Győry. "On the diophantine equation ${n \atopwithdelims ()k} = x^l$." Acta Arithmetica 80.3 (1997): 289-295. <http://eudml.org/doc/207044>.

@article{K1997,
abstract = {P. 294, line 14: For “Satz 8” read “Satz 7”, and for “equation (10)” read “equation (13)”.},
author = {K. Győry},
journal = {Acta Arithmetica},
keywords = {exponential diophantine equations; binomial coefficients; linear forms in logarithms},
language = {eng},
number = {3},
pages = {289-295},
title = {On the diophantine equation $\{n \atopwithdelims ()k\} = x^l$},
url = {http://eudml.org/doc/207044},
volume = {80},
year = {1997},
}

TY - JOUR
AU - K. Győry
TI - On the diophantine equation ${n \atopwithdelims ()k} = x^l$
JO - Acta Arithmetica
PY - 1997
VL - 80
IS - 3
SP - 289
EP - 295
AB - P. 294, line 14: For “Satz 8” read “Satz 7”, and for “equation (10)” read “equation (13)”.
LA - eng
KW - exponential diophantine equations; binomial coefficients; linear forms in logarithms
UR - http://eudml.org/doc/207044
ER -

References

top
  1. [1] M. A. Bennett and B. M. M. de Weger, On the Diophantine equation | a x n - b y n | = 1 , to appear. 
  2. [2] H. Darmon and L. Merel, Winding quotients and some variants of Fermat's Last Theorem, to appear. Zbl0976.11017
  3. [3] P. Dénes, Über die diophantische Gleichung x l + y l = c z l , Acta Math. 88 (1952), 241-251. 
  4. [4] L. E. Dickson, History of the Theory of Numbers, Vol. II, reprinted by Chelsea, New York, 1971. 
  5. [5] P. Erdős, Note on the product of consecutive integers (II), J. London Math. Soc. 14 (1939), 245-249. Zbl65.1145.01
  6. [6] P. Erdős, On a diophantine equation, J. London Math. Soc. 26 (1951), 176-178. Zbl0043.04309
  7. [7] P. Erdős and J. Surányi, Selected Topics in Number Theory, 2nd ed., Szeged, 1996 (in Hungarian). Zbl0095.02904
  8. [8] K. Győry, On the diophantine equations n 2 = a l and n 3 = a l , Mat. Lapok 14 (1963), 322-329 (in Hungarian). 
  9. [9] K. Győry, Über die diophantische Gleichung x p + y p = c z p , Publ. Math. Debrecen 13 (1966), 301-305. Zbl0171.29703
  10. [10] K. Győry, Contributions to the theory of diophantine equations, Ph.D. Thesis, Debrecen, 1966 (in Hungarian). 
  11. [11] E. Landau, Vorlesungen über Zahlentheorie, III, Leipzig, 1927. 
  12. [12] S. Lubelski, Studien über den grossen Fermatschen Satz, Prace Mat.-Fiz. 42 (1935), 11-44. Zbl0011.14802
  13. [13] R. Obláth, Note on the binomial coefficients, J. London Math. Soc. 23 (1948), 252-253. Zbl0033.24903
  14. [14] P. Ribenboim, The Little Book of Big Primes, Springer, 1991. Zbl0734.11001
  15. [15] N. Terai, On a Diophantine equation of Erdős, Proc. Japan Acad. Ser. A 70 (1994), 213-217. Zbl0821.11022
  16. [16] R. Tijdeman, Applications of the Gelfond-Baker method to rational number theory, in: Topics in Number Theory, North-Holland, 1976, 399-416. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.