# On the diophantine equation $n(n+1)...(n+k-1)=b{x}^{l}$

Acta Arithmetica (1998)

- Volume: 83, Issue: 1, page 87-92
- ISSN: 0065-1036

## Access Full Article

top## How to cite

topK. Győry. "On the diophantine equation $n(n+1)...(n+k-1) = bx^l$." Acta Arithmetica 83.1 (1998): 87-92. <http://eudml.org/doc/207107>.

@article{K1998,

author = {K. Győry},

journal = {Acta Arithmetica},

keywords = {exponential equation; product of consecutive positive integers; arithmetic progressions},

language = {eng},

number = {1},

pages = {87-92},

title = {On the diophantine equation $n(n+1)...(n+k-1) = bx^l$},

url = {http://eudml.org/doc/207107},

volume = {83},

year = {1998},

}

TY - JOUR

AU - K. Győry

TI - On the diophantine equation $n(n+1)...(n+k-1) = bx^l$

JO - Acta Arithmetica

PY - 1998

VL - 83

IS - 1

SP - 87

EP - 92

LA - eng

KW - exponential equation; product of consecutive positive integers; arithmetic progressions

UR - http://eudml.org/doc/207107

ER -

## References

top- [1] H. Darmon and L. Merel, Winding quotients and some variants of Fermat's Last Theorem, J. Reine Angew. Math., to appear. Zbl0976.11017
- [2] P. Erdős, Note on products of consecutive integers, J. London Math. Soc. 14 (1939), 194-198. Zbl0021.20704
- [3] P. Erdős, On a diophantine equation, ibid. 26 (1951), 176-178. Zbl0043.04309
- [4] P. Erdős and J. L. Selfridge, The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292-301. Zbl0295.10017
- [5] K. Győry, On the diophantine equation $\left(\genfrac{}{}{0pt}{}{n}{k}\right)={x}^{l}$, Acta Arith. 80 (1997), 289-295.
- [6] W. Ljunggren, New solution of a problem proposed by E. Lucas, Norsk. Mat. Tidskr. 34 (1952), 65-72. Zbl0047.04102
- [7] W. Ljunggren, Some remarks on the diophantine equations x²-Dy⁴ = 1 and x⁴-Dy²=1, J. London Math. Soc. 41 (1966), 542-544. Zbl0147.02505
- [8] A. J. J. Meyl, Question 1194, Nouv. Ann. Math. (2) 17 (1878), 464-467.
- [9] K. A. Ribet, On the equation ${a}^{p}+{2}^{\alpha}{b}^{p}+{c}^{p}=0$, Acta Arith. 79 (1997), 7-16.
- [10] O. Rigge, Über ein diophantisches Problem, in: 9th Congress Math. Scand., Helsingfors, 1938, Mercator, 1939, 155-160. Zbl65.0139.02
- [11] N. Saradha, On perfect powers in products with terms from arithmetic progressions, Acta Arith. 82 (1997), 147-172. Zbl0922.11025
- [12] N. Saradha, Squares in products with terms in an arithmetic progression, to appear. Zbl0920.11018
- [13] T. N. Shorey, Some exponential diophantine equations, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge Univ. Press, 1988, 352-365.
- [14] T. N. Shorey, Perfect powers in products of arithmetical progressions with fixed initial term, Indag. Math. (N.S.) 7 (1996), 521-525. Zbl0874.11034
- [15] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Univ. Press, 1986.
- [16] J. J. Sylvester, On arithmetic series, Messenger Math. 21 (1892), 1-19 and 87-120.
- [17] R. Tijdeman, Diophantine equations and diophantine approximations, in: Number Theory and Applications, R. A. Mollin (ed.), Kluwer Acad. Publ., 1989, 215-243. Zbl0719.11014
- [18] R. Tijdeman, Exponential diophantine equations 1986-1996, in: Number Theory, K. Győry, A. Pethő and V. T. Sós (eds.), W. de Gruyter, to appear. Zbl0606.10011
- [19] G. N. Watson, The problem of the square pyramid, Messenger Math. 48 (1919), 1-22.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.