Riemann-Hurwitz formula in basic S -extensions

Yi Ouyang; Fei Xu

Acta Arithmetica (1997)

  • Volume: 81, Issue: 1, page 1-10
  • ISSN: 0065-1036

How to cite

top

Yi Ouyang, and Fei Xu. "Riemann-Hurwitz formula in basic $ℤ_S$-extensions." Acta Arithmetica 81.1 (1997): 1-10. <http://eudml.org/doc/207051>.

@article{YiOuyang1997,
author = {Yi Ouyang, Fei Xu},
journal = {Acta Arithmetica},
keywords = {Iwasawa theory; Iwasawa invariants; cyclotomic extensions; Friedman’s -invariant},
language = {eng},
number = {1},
pages = {1-10},
title = {Riemann-Hurwitz formula in basic $ℤ_S$-extensions},
url = {http://eudml.org/doc/207051},
volume = {81},
year = {1997},
}

TY - JOUR
AU - Yi Ouyang
AU - Fei Xu
TI - Riemann-Hurwitz formula in basic $ℤ_S$-extensions
JO - Acta Arithmetica
PY - 1997
VL - 81
IS - 1
SP - 1
EP - 10
LA - eng
KW - Iwasawa theory; Iwasawa invariants; cyclotomic extensions; Friedman’s -invariant
UR - http://eudml.org/doc/207051
ER -

References

top
  1. [1] N. Childress, λ-invariants and Γ-transforms, Manuscripta Math. 64 (1989), 359-375. 
  2. [2] E. Friedman, Ideal class groups in basic p 1 × . . . × p s extensions of abelian number fields, Invent. Math. 65 (1982), 425-440. Zbl0495.12007
  3. [3] K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183-226. 
  4. [4] K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tohôku Math. J. (2) 33 (1981), 263-288. Zbl0468.12004
  5. [5] Y. Kida, l-extensions of CM-fields and cyclotomic invariants, J. Number Theory 2 (1980), 519-528. Zbl0455.12007
  6. [6] J. Satoh, The Iwasawa λ p -invariants of Γ-transforms of the generating functions of the Bernoulli numbers, Japan. J. Math. 17 (1991), 165-174 . Zbl0739.11047
  7. [7] W. Sinnott, On the μ-invariant of the Γ-transform of a rational function, Invent. Math. 75 (1984), 273-282. Zbl0531.12004
  8. [8] W. Sinnott, On the p-adic L-functions and the Riemann-Hurwitz genus formula, Compositio Math. 53 (1984), 3-17. Zbl0545.12011
  9. [9] W. Sinnott, Γ-transforms of rational function measures on S , Invent. Math. 89 (1987), 139-157. Zbl0637.12004
  10. [10] L. C. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1982. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.