Root systems and the Erdős-Szekeres Problem

Roy Maltby

Acta Arithmetica (1997)

  • Volume: 81, Issue: 3, page 229-245
  • ISSN: 0065-1036

How to cite

top

Roy Maltby. "Root systems and the Erdős-Szekeres Problem." Acta Arithmetica 81.3 (1997): 229-245. <http://eudml.org/doc/207062>.

@article{RoyMaltby1997,
author = {Roy Maltby},
journal = {Acta Arithmetica},
keywords = {root system; Erdős-Szekeres Problem; Erdös-Szekeres problem; 2-norm; construction of pure products from root systems},
language = {eng},
number = {3},
pages = {229-245},
title = {Root systems and the Erdős-Szekeres Problem},
url = {http://eudml.org/doc/207062},
volume = {81},
year = {1997},
}

TY - JOUR
AU - Roy Maltby
TI - Root systems and the Erdős-Szekeres Problem
JO - Acta Arithmetica
PY - 1997
VL - 81
IS - 3
SP - 229
EP - 245
LA - eng
KW - root system; Erdős-Szekeres Problem; Erdös-Szekeres problem; 2-norm; construction of pure products from root systems
UR - http://eudml.org/doc/207062
ER -

References

top
  1. [A61] F. V. Atkinson, On a problem of Erdős and Szekeres, Canad. Math. Bull. 1 (1961), 7-12. Zbl0119.04304
  2. [B96] P. Borwein, e-mail communication. 
  3. [BI94] P. Borwein and C. Ingalls, The Prouhet-Tarry-Escott Problem revisited, Enseign. Math. 40 (1994), 3-27. Zbl0810.11016
  4. [C72] R. W. Carter, Simple Groups of Lie Type, Wiley, 1972. 
  5. [D79] E. Dobrowolski, On a question of Lehmer and the number of irreductible factors of a polynomial, Acta Arith. 34 (1979), 391-401. Zbl0416.12001
  6. [ES58] P. Erdős and G. Szekeres, On the product k = 1 n ( 1 - z α k ) , Acad. Serbe Sci. Publ. Inst. Math. 12 (1958), 29-34. 
  7. [K94] M. N. Kolountzakis, Probabilistic and Constructive Methods in Harmonic Analysis and Additive Number Theory, Ph.D. dissertation, Stanford University, 1994. 
  8. [M72] I. G. MacDonald, Affine root systems and Dedekind's η-function, Invent. Math. 15 (1972), 91-143. Zbl0244.17005
  9. [M96] R. Maltby, Pure Product Polynomials of Small Norm, Ph.D. dissertation, Simon Fraser University, 1996. 
  10. [M97] R. Maltby, Pure product polynomials and the Prouhet-Tarry-Escott Problem, Math. Comp. (1997), to appear. Zbl1036.11539
  11. [M94] S. Maltby, Some optimal results related to the PTE Problem, preprint. 
  12. [O82] A. M. Odlyzko, Minima of cosine sums and maxima of polynomials on the unit circle, J. London Math. Soc. (2) 26 (1982), 412-420. Zbl0476.30005
  13. [O95] A. M. Odlyzko, personal communication. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.