Normality of numbers generated by the values of polynomials at primes

Yoshinobu Nakai; Iekata Shiokawa

Acta Arithmetica (1997)

  • Volume: 81, Issue: 4, page 345-356
  • ISSN: 0065-1036

How to cite

top

Yoshinobu Nakai, and Iekata Shiokawa. "Normality of numbers generated by the values of polynomials at primes." Acta Arithmetica 81.4 (1997): 345-356. <http://eudml.org/doc/207069>.

@article{YoshinobuNakai1997,
author = {Yoshinobu Nakai, Iekata Shiokawa},
journal = {Acta Arithmetica},
keywords = {polynomials at primes; normal numbers; -adic expansion},
language = {eng},
number = {4},
pages = {345-356},
title = {Normality of numbers generated by the values of polynomials at primes},
url = {http://eudml.org/doc/207069},
volume = {81},
year = {1997},
}

TY - JOUR
AU - Yoshinobu Nakai
AU - Iekata Shiokawa
TI - Normality of numbers generated by the values of polynomials at primes
JO - Acta Arithmetica
PY - 1997
VL - 81
IS - 4
SP - 345
EP - 356
LA - eng
KW - polynomials at primes; normal numbers; -adic expansion
UR - http://eudml.org/doc/207069
ER -

References

top
  1. [1] A. H. Copeland and P. Erdős, Notes on normal numbers, Bull. Amer. Math. Soc. 52 (1946), 857-860. Zbl0063.00962
  2. [2] H. Davenport and P. Erdős, Note on normal decimals, Canad. J. Math. 4 (1952), 58-63. Zbl0046.04902
  3. [3] L.-K. Hua, Additive Theory of Prime Numbers, Transl. Math. Monograph 13, Amer. Math. Soc., Providence, RI, 1965. Zbl0192.39304
  4. [4] M. N. Huxley, The Distribution of Prime Numbers, Oxford Math. Monograph, Oxford Univ. Press, 1972. Zbl0248.10030
  5. [5] Y.-N. Nakai and I. Shiokawa, A class of normal numbers, Japan. J. Math. 16 (1990), 17-29. 
  6. [6] Y.-N. Nakai and I. Shiokawa, A class of normal numbers II, in: Number Theory and Cryptography, J. H. Loxton (ed.), London Math. Soc. Lecture Note Ser. 154, Cambridge Univ. Press, 1990, 204-210. 
  7. [7] Y.-N. Nakai and I. Shiokawa, Discrepancy estimates for a class of normal numbers, Acta Arith. 62 (1992), 271-284. 
  8. [8] J. Schiffer, Discrepancy of normal numbers, ibid. 47 (1986), 175-186. 
  9. [9] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., revised by D. R. Heath-Brown, Oxford Univ. Press, 1986. Zbl0601.10026
  10. [10] I. M. Vinogradov, The Method of Trigonometrical, Sums in Number Theory, Nauka, 1971 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.