A combinatorial method for construction normal numbers.
Page 1 Next
Bodo VOLKMANN, Peter SZÜSZ (1994)
Forum mathematicum
Walter Philipp (1976)
Acta Arithmetica
Mordechay Levin, Meir Smorodinsky (2000)
Colloquium Mathematicae
We extend the Davenport and Erdős construction of normal numbers to the case.
R. Stoneham (1970)
Acta Arithmetica
K. Matthews, A. Watts (1984)
Acta Arithmetica
G. Leigh (1986)
Acta Arithmetica
Bodo VOLKMANN (1982/1983)
Seminaire de Théorie des Nombres de Bordeaux
Shigeki Akiyama, Taizo Sadahiro (1998)
Acta Mathematica et Informatica Universitatis Ostraviensis
F. Schweiger (1972)
Monatshefte für Mathematik
Hajime Kaneko (2012)
Acta Arithmetica
Rolf Nürnberg (1983)
Mathematische Zeitschrift
Edgardo Ugalde (2000)
Journal de théorie des nombres de Bordeaux
A new class of -adic normal numbers is built recursively by using Eulerian paths in a sequence of de Bruijn digraphs. In this recursion, a path is constructed as an extension of the previous one, in such way that the -adic block determined by the path contains the maximal number of different -adic subblocks of consecutive lengths in the most compact arrangement. Any source of redundancy is avoided at every step. Our recursive construction is an alternative to the several well-known concatenative...
Filip, Ferdinánd, Šustek, Jan (2010)
Acta Universitatis Sapientiae. Mathematica
János Galambos (1974)
Acta Arithmetica
M. QUEFFELEC (1978/1979)
Seminaire de Théorie des Nombres de Bordeaux
Anne Bertrand-Mathis (1985)
Annales de l'institut Fourier
Soit un nombre de Pisot de degré ; nous avons montré précédemment que l’endomorphisme du tore dont est valeur propre est facteur du -shift bilatéral par une application continue ; nous prouvons ici (théorème 1) que l’application conserve l’entropie de toute mesure invariante sur le -shift. Ceci permet de définir l’entropie d’un nombre dans la base et d’en étudier la stabilité. Nous généralisons également des résultats de Kamae, Rauzy et Bernay.
Zuzana Masáková, Tomáš Vávra (2011)
Kybernetika
We consider positional numeration system with negative base , as introduced by Ito and Sadahiro. In particular, we focus on arithmetical properties of such systems when is a quadratic Pisot number. We study a class of roots of polynomials , , and show that in this case the set of finite -expansions is closed under addition, although it is not closed under subtraction. A particular example is , the golden ratio. For such , we determine the exact bound on the number of fractional digits...
Akiyama, Shigeki, Borbély, Tibor, Brunotte, Horst, Pethő, Attila, Thuswaldner, Jörg M. (2006)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Tibor Šalát (1973)
Czechoslovak Mathematical Journal
Hachem Hichri (2015)
Acta Arithmetica
It is already known that all Pisot numbers are beta numbers, but for Salem numbers this was proved just for the degree 4 case. In 1945, R. Salem showed that for any Pisot number θ we can construct a sequence of Salem numbers which converge to θ. In this short note, we give some results on the beta expansion for infinitely many sequences of Salem numbers obtained by this construction.
Page 1 Next