Hyperelliptic modular curves X * 0 ( N )

Yuji Hasegawa

Acta Arithmetica (1997)

  • Volume: 81, Issue: 4, page 369-385
  • ISSN: 0065-1036

How to cite

top

Yuji Hasegawa. "Hyperelliptic modular curves $X*_0(N)$." Acta Arithmetica 81.4 (1997): 369-385. <http://eudml.org/doc/207072>.

@article{YujiHasegawa1997,
author = {Yuji Hasegawa},
journal = {Acta Arithmetica},
keywords = {hyperelliptic modular curves},
language = {eng},
number = {4},
pages = {369-385},
title = {Hyperelliptic modular curves $X*_0(N)$},
url = {http://eudml.org/doc/207072},
volume = {81},
year = {1997},
}

TY - JOUR
AU - Yuji Hasegawa
TI - Hyperelliptic modular curves $X*_0(N)$
JO - Acta Arithmetica
PY - 1997
VL - 81
IS - 4
SP - 369
EP - 385
LA - eng
KW - hyperelliptic modular curves
UR - http://eudml.org/doc/207072
ER -

References

top
  1. [1] A. O. L. Atkin and J. Lehner, Hecke operators on Γ 0 ( m ) , Math. Ann. 185 (1970), 134-160. Zbl0177.34901
  2. [2] A. O. L. Atkin and D. J. Tingley, Numerical tables on elliptic curves, in: Modular Functions of One Variable IV, B. Birch and W. Kuyk (eds.), Lecture Notes in Math. 476, Springer, Berlin, 1975, 74-144. 
  3. [3] P. Deligne et M. Rapoport, Les schémas de modules de courbes elliptiques, in: Modular Functions of One Variable II, P. Deligne and W. Kuyk (eds.), Lecture Notes in Math. 349, Springer, Berlin, 1973, 143-316. Zbl0281.14010
  4. [4] R. Fricke, Die Elliptischen Funktionen und ihre Anwendungen, Teubner, Leipzig and Berlin, 1916. Zbl46.0599.02
  5. [5] Y. Hasegawa, Table of quotient curves of modular curves X 0 ( N ) with genus 2, Proc. Japan Acad. Ser. A 71 (1995), 235-239. Zbl0873.11040
  6. [6] Y. Hasegawa, Modular abelian surfaces and hyperelliptic curves of genus two, preprint. 
  7. [7] Y. Hasegawa and K. Hashimoto, Hyperelliptic modular curves X * 0 ( N ) with square-free levels, Acta Arith. 77 (1996), 179-193. Zbl0886.11023
  8. [8] H. Hijikata, Explicit formula of the traces of Hecke operators for Γ 0 ( N ) , J. Math. Soc. Japan 26 (1974), 56-82. Zbl0266.12009
  9. [9] P. G. Kluit, Hecke operators on Γ*(N) and their traces, Dissertation of Vrije Universiteit, Amsterdam, 1979. 
  10. [10] J. Lehner and M. Newman, Weierstrass points of Γ 0 ( N ) , Ann. of Math. 79 (1964), 360-368. Zbl0124.29203
  11. [11] N. Murabayashi, On normal forms of modular curves of genus 2, Osaka J. Math. 29 (1992), 405-418. Zbl0774.14025
  12. [12] A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449-462. Zbl0314.10018
  13. [13] M. Yamauchi, On the traces of Hecke operators for a normalizer of Γ 0 ( N ) , J. Math. Kyoto Univ. 13 (1973), 403-411. Zbl0267.10038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.