Double transitivity of Galois groups of trinomials
S. D. Cohen; A. Movahhedi; A. Salinier
Acta Arithmetica (1997)
- Volume: 82, Issue: 1, page 1-15
- ISSN: 0065-1036
Access Full Article
topHow to cite
topS. D. Cohen, A. Movahhedi, and A. Salinier. "Double transitivity of Galois groups of trinomials." Acta Arithmetica 82.1 (1997): 1-15. <http://eudml.org/doc/207075>.
@article{S1997,
author = {S. D. Cohen, A. Movahhedi, A. Salinier},
journal = {Acta Arithmetica},
keywords = {double transitivity of Galois groups; trinomials; symmetric group; inertia groups; primitive permutation groups},
language = {eng},
number = {1},
pages = {1-15},
title = {Double transitivity of Galois groups of trinomials},
url = {http://eudml.org/doc/207075},
volume = {82},
year = {1997},
}
TY - JOUR
AU - S. D. Cohen
AU - A. Movahhedi
AU - A. Salinier
TI - Double transitivity of Galois groups of trinomials
JO - Acta Arithmetica
PY - 1997
VL - 82
IS - 1
SP - 1
EP - 15
LA - eng
KW - double transitivity of Galois groups; trinomials; symmetric group; inertia groups; primitive permutation groups
UR - http://eudml.org/doc/207075
ER -
References
top- [1] M. D. Atkinson, Doubly transitive but not doubly primitive permutation groups II, J. London Math. Soc. (2) 10 (1975), 53-60. Zbl0302.20001
- [2] P. J. Cameron, Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13 (1981), 1-22. Zbl0463.20003
- [3] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, 1967.
- [4] S. D. Cohen, Galois groups of trinomials, Acta Arith. 54 (1989), 43-49. Zbl0716.12004
- [5] C. Jordan, Théorèmes sur les groupes primitifs, J. Math. Pures Appl. (2) 16 (1871), 383-408 = Œuvres, Tome 1, Gauthier-Villars, Paris, 1961, 313-338.
- [6] K. Komatsu, Square free discriminants and affect-free equations, Tokyo J. Math. 14 (1991), 57-60. Zbl0734.11063
- [7] K. Komatsu, On the Galois group of , Tokyo J. Math. 14 (1991), 227-229. Zbl0734.11062
- [8] K. Komatsu, On the Galois group of , Tokyo J. Math. 15 (1992), 351-356. Zbl0780.11049
- [9] R. Levingston and D. E. Taylor, The theorem of Marggraff on primitive permutation groups which contain a cycle, Bull. Austral. Math. Soc. 15 (1976), 125-128. Zbl0338.20002
- [10] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass., 1983. (Now distributed by Cambridge University Press.) Zbl0554.12010
- [11] P. Llorente, E. Nart and N. Vila, Discriminants of number fields defined by trinomials, Acta Arith. 43 (1984), 367-373. Zbl0493.12010
- [12] A. Movahhedi, Galois group of , J. Algebra 180 (1996), 966-975. Zbl0863.12003
- [13] A. Movahhedi and A. Salinier, The primitivity of the Galois group of a trinomial, J. London Math. Soc. (2) 53 (1996), 433-440. Zbl0862.11063
- [14] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 2nd ed., Springer, Berlin, and PWN-Polish Scientific Publ., Warszawa, 1990. Zbl0717.11045
- [15] P. M. Neumann, Some primitive permutation groups, Proc. London Math. Soc. 50 (1985), 265-281. Zbl0555.20003
- [16] O. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99 (1928), 84-117. Zbl54.0191.02
- [17] H. Osada, The Galois groups of the polynomials , J. Number Theory 25 (1987), 230-238. Zbl0608.12010
- [18] H. Osada, The Galois groups of the polynomials . II, Tôhoku Math. J. 39 (1987), 437-445. Zbl0615.12012
- [19] J.-P. Serre, Topics in Galois Theory, Res. Notes Math., Vol. 1, Jones and Bartlett, Boston, 1992.
- [20] L. Soicher and J. McKay, Computing Galois groups over the rationals, J. Number Theory 20 (1985), 273-281. Zbl0579.12006
- [21] R. G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 1099-1106. Zbl0113.01701
- [22] W. Trinks, Arithmetisch ähnliche Zahlkörper, Diplomarbeit, Math. Fak. Univ. Karlsruhe (TH), 1969.
- [23] H. Wielandt, Finite Permutation Groups, Academic Press, 1964.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.