Double transitivity of Galois groups of trinomials

S. D. Cohen; A. Movahhedi; A. Salinier

Acta Arithmetica (1997)

  • Volume: 82, Issue: 1, page 1-15
  • ISSN: 0065-1036

How to cite

top

S. D. Cohen, A. Movahhedi, and A. Salinier. "Double transitivity of Galois groups of trinomials." Acta Arithmetica 82.1 (1997): 1-15. <http://eudml.org/doc/207075>.

@article{S1997,
author = {S. D. Cohen, A. Movahhedi, A. Salinier},
journal = {Acta Arithmetica},
keywords = {double transitivity of Galois groups; trinomials; symmetric group; inertia groups; primitive permutation groups},
language = {eng},
number = {1},
pages = {1-15},
title = {Double transitivity of Galois groups of trinomials},
url = {http://eudml.org/doc/207075},
volume = {82},
year = {1997},
}

TY - JOUR
AU - S. D. Cohen
AU - A. Movahhedi
AU - A. Salinier
TI - Double transitivity of Galois groups of trinomials
JO - Acta Arithmetica
PY - 1997
VL - 82
IS - 1
SP - 1
EP - 15
LA - eng
KW - double transitivity of Galois groups; trinomials; symmetric group; inertia groups; primitive permutation groups
UR - http://eudml.org/doc/207075
ER -

References

top
  1. [1] M. D. Atkinson, Doubly transitive but not doubly primitive permutation groups II, J. London Math. Soc. (2) 10 (1975), 53-60. Zbl0302.20001
  2. [2] P. J. Cameron, Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13 (1981), 1-22. Zbl0463.20003
  3. [3] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, 1967. 
  4. [4] S. D. Cohen, Galois groups of trinomials, Acta Arith. 54 (1989), 43-49. Zbl0716.12004
  5. [5] C. Jordan, Théorèmes sur les groupes primitifs, J. Math. Pures Appl. (2) 16 (1871), 383-408 = Œuvres, Tome 1, Gauthier-Villars, Paris, 1961, 313-338. 
  6. [6] K. Komatsu, Square free discriminants and affect-free equations, Tokyo J. Math. 14 (1991), 57-60. Zbl0734.11063
  7. [7] K. Komatsu, On the Galois group of x p + a x + a = 0 , Tokyo J. Math. 14 (1991), 227-229. Zbl0734.11062
  8. [8] K. Komatsu, On the Galois group of x p + p t b ( x + 1 ) = 0 , Tokyo J. Math. 15 (1992), 351-356. Zbl0780.11049
  9. [9] R. Levingston and D. E. Taylor, The theorem of Marggraff on primitive permutation groups which contain a cycle, Bull. Austral. Math. Soc. 15 (1976), 125-128. Zbl0338.20002
  10. [10] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass., 1983. (Now distributed by Cambridge University Press.) Zbl0554.12010
  11. [11] P. Llorente, E. Nart and N. Vila, Discriminants of number fields defined by trinomials, Acta Arith. 43 (1984), 367-373. Zbl0493.12010
  12. [12] A. Movahhedi, Galois group of x p + a x + a , J. Algebra 180 (1996), 966-975. Zbl0863.12003
  13. [13] A. Movahhedi and A. Salinier, The primitivity of the Galois group of a trinomial, J. London Math. Soc. (2) 53 (1996), 433-440. Zbl0862.11063
  14. [14] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 2nd ed., Springer, Berlin, and PWN-Polish Scientific Publ., Warszawa, 1990. Zbl0717.11045
  15. [15] P. M. Neumann, Some primitive permutation groups, Proc. London Math. Soc. 50 (1985), 265-281. Zbl0555.20003
  16. [16] O. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99 (1928), 84-117. Zbl54.0191.02
  17. [17] H. Osada, The Galois groups of the polynomials x n + a x l + b , J. Number Theory 25 (1987), 230-238. Zbl0608.12010
  18. [18] H. Osada, The Galois groups of the polynomials x n + a x s + b . II, Tôhoku Math. J. 39 (1987), 437-445. Zbl0615.12012
  19. [19] J.-P. Serre, Topics in Galois Theory, Res. Notes Math., Vol. 1, Jones and Bartlett, Boston, 1992. 
  20. [20] L. Soicher and J. McKay, Computing Galois groups over the rationals, J. Number Theory 20 (1985), 273-281. Zbl0579.12006
  21. [21] R. G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 1099-1106. Zbl0113.01701
  22. [22] W. Trinks, Arithmetisch ähnliche Zahlkörper, Diplomarbeit, Math. Fak. Univ. Karlsruhe (TH), 1969. 
  23. [23] H. Wielandt, Finite Permutation Groups, Academic Press, 1964. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.