Abelian binomials, power residues and exponential congruences
We shall describe how to construct a fundamental solution for the Pell equation over finite fields of characteristic . Especially, a complete description of the structure of these fundamental solutions will be given using Chebyshev polynomials. Furthermore, we shall describe the structure of the solutions of the general Pell equation .
In this report we study the arithmetic of Rikuna’s generic polynomial for the cyclic group of order and obtain a generalized Kummer theory. It is useful under the condition that and where is a primitive -th root of unity and . In particular, this result with implies the classical Kummer theory. We also present a method for calculating not only the conductor but also the Artin symbols of the cyclic extension which is defined by the Rikuna polynomial.