Properties of certain integer-valued analogues of Dedekind sums

Jeffrey L. Meyer

Acta Arithmetica (1997)

  • Volume: 82, Issue: 3, page 229-242
  • ISSN: 0065-1036

How to cite

top

Jeffrey L. Meyer. "Properties of certain integer-valued analogues of Dedekind sums." Acta Arithmetica 82.3 (1997): 229-242. <http://eudml.org/doc/207089>.

@article{JeffreyL1997,
author = {Jeffrey L. Meyer},
journal = {Acta Arithmetica},
keywords = {Dedekind sums; reciprocity laws},
language = {eng},
number = {3},
pages = {229-242},
title = {Properties of certain integer-valued analogues of Dedekind sums},
url = {http://eudml.org/doc/207089},
volume = {82},
year = {1997},
}

TY - JOUR
AU - Jeffrey L. Meyer
TI - Properties of certain integer-valued analogues of Dedekind sums
JO - Acta Arithmetica
PY - 1997
VL - 82
IS - 3
SP - 229
EP - 242
LA - eng
KW - Dedekind sums; reciprocity laws
UR - http://eudml.org/doc/207089
ER -

References

top
  1. [1] T. Asai, Some arithmetic on Dedekind sums, J. Math. Soc. Japan 38 (1986), 163-172. Zbl0571.10010
  2. [2] B. C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan, J. Reine Angew. Math. 303/304 (1978), 332-365. Zbl0384.10011
  3. [3] R. Dedekind, Erläuterungen zu zwei Fragmenten von Riemann, in: Riemann's Gesammelte Math. Werke, 2nd ed., 1882, 466-472. 
  4. [4] W. Duke, J. B. Friedlander and H. Iwaniec, Equidistribution of roots of a quadratic congruence to prime moduli, Ann. of Math. 141 (1995), 423-441. Zbl0840.11003
  5. [5] L. A. Goldberg, Transformations of theta-functions and analogues of Dedekind sums, thesis, Univ. of Illinois, Urbana, 1981. 
  6. [6] G. H. Hardy, On certain series of discontinuous functions connected with the modular functions, Quart. J. Math. Oxford 36 (1905), 93-123. Zbl35.0468.03
  7. [7] G. H. Hardy, Collected Papers, Vol. IV, Clarendon Press, Oxford, 1969. Zbl0181.28902
  8. [8] D. Hickerson, Continued fractions and density results for Dedekind sums, J. Reine Angew. Math. 290 (1977), 113-116. Zbl0341.10012
  9. [9] J. L. Meyer, Analogues of Dedekind sums, thesis, Univ. of Illinois, Urbana, 1997. 
  10. [10] I. Niven, H. Zuckerman and H. Montgomery, An Introduction to the Theory of Numbers, 5th ed., Wiley, 1991. Zbl0742.11001
  11. [11] L. Pinzur, On a question of Rademacher concerning Dedekind sums, Proc. Amer. Math. Soc. 61 (1976), 11-15. Zbl0314.10002
  12. [12] H. Rademacher, Zur Theorie der Dedekindschen Summen, Math. Z. 63 (1956), 445-463. 
  13. [13] H. Rademacher, Questions 99 and 100, in: Proc. 1963 Number Theory Conference, Univ. of Colorado, Boulder, Colo., 1963, 112. 
  14. [14] K. Rosen, On the sign of some Dedekind sums, J. Number Theory 9 (1977), 209-212. Zbl0349.10005
  15. [15] R. Sitaramachandrarao, Dedekind and Hardy sums, Acta Arith. 48 (1987), 325-340. Zbl0635.10002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.