On the irreducibility of some polynomials in two variables
Acta Arithmetica (1997)
- Volume: 82, Issue: 3, page 303-307
- ISSN: 0065-1036
Access Full Article
topHow to cite
topB. Brindza, and Á. Pintér. "On the irreducibility of some polynomials in two variables." Acta Arithmetica 82.3 (1997): 303-307. <http://eudml.org/doc/207094>.
@article{B1997,
author = {B. Brindza, Á. Pintér},
journal = {Acta Arithmetica},
keywords = {irreducibility of polynomials; higher degree diophantine equations},
language = {eng},
number = {3},
pages = {303-307},
title = {On the irreducibility of some polynomials in two variables},
url = {http://eudml.org/doc/207094},
volume = {82},
year = {1997},
}
TY - JOUR
AU - B. Brindza
AU - Á. Pintér
TI - On the irreducibility of some polynomials in two variables
JO - Acta Arithmetica
PY - 1997
VL - 82
IS - 3
SP - 303
EP - 307
LA - eng
KW - irreducibility of polynomials; higher degree diophantine equations
UR - http://eudml.org/doc/207094
ER -
References
top- [BS] R. Balasubramanian and T. N. Shorey, On the equation f(x+1)...f(x+k) = f(y+1)...f(y+mk), Indag. Math. (N.S.) 4 (1993), 257-267. Zbl0795.11015
- [DLS] H. Davenport, D. J. Lewis and A. Schinzel, Equations of the form f(x)=g(y), Quart. J. Math. 12 (1961), 304-312. Zbl0121.28403
- [MB] R. A. MacLeod and I. Barrodale, On equal products of consecutive integers, Canad. Math. Bull. 13 (1970), 255-259. Zbl0206.05602
- [SS] N. Saradha and T. N. Shorey, The equations (x+1)...(x+k) = (y+1)...(y+mk) with m=3,4, Indag. Math. (N.S.) 2 (1991), 489-510. Zbl0757.11010
- [SST1] N. Saradha, T. N. Shorey and R. Tijdeman, On the equation x(x+1)...(x+k-1) = y(y+d) ...(y+(mk-1)d), m=1,2, Acta Arith. 71 (1995), 181-196. Zbl0828.11016
- [SST2] N. Saradha, T. N. Shorey and R. Tijdeman, On arithmetic progressions with equal products, Acta Arith. 68 (1994), 89-100. Zbl0812.11023
- [S1] A. Schinzel, An improvement of Runge's theorem on diophantine equations, Comment. Pontific. Acad. Sci. 2 (1969), no. 20, 1-9.
- [S2] A. Schinzel, Reducibility of polynomials of the form f(x)-g(y), Colloq. Math. 18 (1967), 213-218. Zbl0153.37203
- [Sh] T. N. Shorey, On a conjecture that a product of k consecutive positive integers is never equal to a product of mk consecutive positive integers except for 8·9·10=6! and related questions, in: Number Theory (Paris, 1992-93), London Math. Soc. Lecture Note Ser. 215, Cambridge Univ. Press, Cambridge, 1995, 231-244. Zbl0829.11015
- [ST] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Univ. Press, Cambridge, 1986.
- [Y] P. Z. Yuan, On a special Diophantine equation , Publ. Math. Debrecen 44 (1994), 137-143. Zbl0821.11023
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.