The Diophantine equation f(x) = g(y)
Acta Arithmetica (2000)
- Volume: 95, Issue: 3, page 261-288
- ISSN: 0065-1036
Access Full Article
topHow to cite
topBilu, Yuri, and Tichy, Robert. "The Diophantine equation f(x) = g(y)." Acta Arithmetica 95.3 (2000): 261-288. <http://eudml.org/doc/207451>.
@article{Bilu2000,
author = {Bilu, Yuri, Tichy, Robert},
journal = {Acta Arithmetica},
keywords = {Ritt's second theorem; reducibility; Dickson polynomials; Diophantine equations; higher degree diophantine equations; plane curves},
language = {eng},
number = {3},
pages = {261-288},
title = {The Diophantine equation f(x) = g(y)},
url = {http://eudml.org/doc/207451},
volume = {95},
year = {2000},
}
TY - JOUR
AU - Bilu, Yuri
AU - Tichy, Robert
TI - The Diophantine equation f(x) = g(y)
JO - Acta Arithmetica
PY - 2000
VL - 95
IS - 3
SP - 261
EP - 288
LA - eng
KW - Ritt's second theorem; reducibility; Dickson polynomials; Diophantine equations; higher degree diophantine equations; plane curves
UR - http://eudml.org/doc/207451
ER -
References
top- [1] R. M. Avanzi and U. Zannier, Genus one curves defined by separated variable polynomials, Acta Arith., to appear. Zbl1025.11005
- [2] A. Baker, Bounds for solutions of superelliptic equations, Proc. Cambridge Philos. Soc. 65 (1969), 439-444. Zbl0174.33803
- [3] F. Beukers, T. N. Shorey and R. Tijdeman, Irreducibility of polynomials and arithmetic progressions with equal product of terms, in: [21], pp. 11-26. Zbl0933.11011
- [4] Yu. Bilu, Integral points and Galois covers, Mat. Contemp. 14 (1998), 1-11.
- [5] Yu. Bilu, Quadratic factors of f(x)-g(y), Acta Arith. 90 (1999), 341-355. Zbl0935.12003
- [6] Yu. F. Bilu, B. Brindza, Á. Pintér and R. F. Tichy, On some diophantine problems related to power sums and binomial coefficients, in preparation.
- [7] Yu. Bilu and G. Hanrot, Solving superelliptic Diophantine equations by Baker's method, Compositio Math. 112 (1998), 273-312. Zbl0915.11065
- [8] Yu. F. Bilu, T. Stoll and R. F. Tichy, Diophantine equations for the Meixner polynomials, in preparation.
- [9] B. Brindza and Á. Pintér, On the irreducibility of some polynomials in two variables, Acta Arith. 82 (1997), 303-307. Zbl0922.11018
- [10] Y. Bugeaud, Bounds for the solutions of superelliptic equations, Compositio Math. 107 (1997), 187-219. Zbl0886.11016
- [11] P. Cassou-Noguès et J.-M. Couveignes, Factorisations explicites de g(y)-h(z), Acta Arith. 87 (1999), 291-317. Zbl0923.12004
- [12] H. Davenport, D. J. Lewis and A. Schinzel, Equations of the form f(x) = g(y), Quart. J. Math. Oxford Ser. (2) 12 (1961), 304-312. Zbl0121.28403
- [13] J.-H. Evertse and J. H. Silverman, Uniform bounds for the number of solutions to , Math. Proc. Cambridge Philos. Soc. 100 (1986), 237-248. Zbl0611.10009
- [14] W. Feit, On symmetric balanced incomplete block designs with doubly transitive automorphism groups, J. Combin. Theory Ser. A 14 (1973), 221-247. Zbl0278.05016
- [15] W. Feit, Some consequences of the classification of finite simple groups, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 175-181. Zbl0454.20014
- [16] M. Fried, The field of definition of function fields and a problem in the reducibility of polynomials in two variables, Illinois J. Math. 17 (1973), 128-146. Zbl0266.14013
- [17] M. Fried, Arithmetical properties of function fields (II). The generalized Schur problem, Acta Arith. 25 (1973/74), 225-258. Zbl0229.12020
- [18] M. Fried, On a theorem of Ritt and related Diophantine problems, J. Reine Angew. Math. 264 (1974), 40-55. Zbl0278.12101
- [19] M. Fried, Exposition on an arithmetic-group theoretic connection via Riemann's existence theorem, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 571-601.
- [20] M. Fried, Variables separated polynomials, the genus 0 problem, and moduli spaces, in: [21], pp. 169-228. Zbl1053.14509
- [21] K. Győry, H. Iwaniec and J. Urbanowicz (eds.), Number Theory in Progress (Proc. Internat. Conf. in Number Theory in Honor of A. Schinzel, Zakopane, 1997), de Gruyter, 1999.
- [22] P. Kirschenhofer, A. Pethő and R. F. Tichy, On analytical and Diophantine properties of a family of counting polynomials, Acta Sci. Math. (Szeged) 65 (1999), 47-59. Zbl0983.11013
- [23] S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983. Zbl0528.14013
- [24] W. J. LeVeque, On the equation , Acta Arith. 9 (1964), 209-219. Zbl0127.27201
- [25] R. Lidl, G. L. Mullen and G. Turnwald, Dickson Polynomials, Pitman Monographs Surveys Pure Appl. Math. 65, Longman Sci. Tech., 1993.
- [26] J. F. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc. 23 (1922), 51-66. Zbl48.0079.01
- [27] A. Schinzel, Selected Topics on Polynomials, The Univ. of Michigan Press, Ann Arbor, 1982.
- [28] J.-P. Serre, Lectures on the Mordell-Weil Theorem, Aspects Math. E15, Vieweg, Braunschweig, 1989.
- [29] C. L. Siegel, The integer solutions of the equation , J. London Math. Soc. 1 (1926), 66-68; also: Gesammelte Abhandlungen, Band 1, 207-208. Zbl52.0149.02
- [30] C. L. Siegel, Über einige Anwendungen Diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys.-Math. Kl., 1929, Nr. 1; also: Gesammelte Abhandlungen, Band 1, 209-266.
- [31] V. G. Sprindžuk, Classical Diophantine Equations in Two Unknowns, Nauka, Moscow, 1982 (in Russian); English transl.: Lecture Notes in Math. 1559, Springer, 1994.
- [32] G. Turnwald, On Schur's conjecture, J. Austral. Math. Soc. 58 (1995), 312-357. Zbl0834.11052
- [33] H. A. Tverberg, A study in irreducibility of polynomials, Ph.D. thesis, Dept. of Math., Univ. of Bergen, 1968.
- [34] P. M. Voutier, On the number of S-integral solutions to , Monatsh. Math. 119 (1995), 125-139. Zbl0816.11022
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.