The Diophantine equation f(x) = g(y)

Yuri Bilu; Robert Tichy

Acta Arithmetica (2000)

  • Volume: 95, Issue: 3, page 261-288
  • ISSN: 0065-1036

How to cite

top

Bilu, Yuri, and Tichy, Robert. "The Diophantine equation f(x) = g(y)." Acta Arithmetica 95.3 (2000): 261-288. <http://eudml.org/doc/207451>.

@article{Bilu2000,
author = {Bilu, Yuri, Tichy, Robert},
journal = {Acta Arithmetica},
keywords = {Ritt's second theorem; reducibility; Dickson polynomials; Diophantine equations; higher degree diophantine equations; plane curves},
language = {eng},
number = {3},
pages = {261-288},
title = {The Diophantine equation f(x) = g(y)},
url = {http://eudml.org/doc/207451},
volume = {95},
year = {2000},
}

TY - JOUR
AU - Bilu, Yuri
AU - Tichy, Robert
TI - The Diophantine equation f(x) = g(y)
JO - Acta Arithmetica
PY - 2000
VL - 95
IS - 3
SP - 261
EP - 288
LA - eng
KW - Ritt's second theorem; reducibility; Dickson polynomials; Diophantine equations; higher degree diophantine equations; plane curves
UR - http://eudml.org/doc/207451
ER -

References

top
  1. [1] R. M. Avanzi and U. Zannier, Genus one curves defined by separated variable polynomials, Acta Arith., to appear. Zbl1025.11005
  2. [2] A. Baker, Bounds for solutions of superelliptic equations, Proc. Cambridge Philos. Soc. 65 (1969), 439-444. Zbl0174.33803
  3. [3] F. Beukers, T. N. Shorey and R. Tijdeman, Irreducibility of polynomials and arithmetic progressions with equal product of terms, in: [21], pp. 11-26. Zbl0933.11011
  4. [4] Yu. Bilu, Integral points and Galois covers, Mat. Contemp. 14 (1998), 1-11. 
  5. [5] Yu. Bilu, Quadratic factors of f(x)-g(y), Acta Arith. 90 (1999), 341-355. Zbl0935.12003
  6. [6] Yu. F. Bilu, B. Brindza, Á. Pintér and R. F. Tichy, On some diophantine problems related to power sums and binomial coefficients, in preparation. 
  7. [7] Yu. Bilu and G. Hanrot, Solving superelliptic Diophantine equations by Baker's method, Compositio Math. 112 (1998), 273-312. Zbl0915.11065
  8. [8] Yu. F. Bilu, T. Stoll and R. F. Tichy, Diophantine equations for the Meixner polynomials, in preparation. 
  9. [9] B. Brindza and Á. Pintér, On the irreducibility of some polynomials in two variables, Acta Arith. 82 (1997), 303-307. Zbl0922.11018
  10. [10] Y. Bugeaud, Bounds for the solutions of superelliptic equations, Compositio Math. 107 (1997), 187-219. Zbl0886.11016
  11. [11] P. Cassou-Noguès et J.-M. Couveignes, Factorisations explicites de g(y)-h(z), Acta Arith. 87 (1999), 291-317. Zbl0923.12004
  12. [12] H. Davenport, D. J. Lewis and A. Schinzel, Equations of the form f(x) = g(y), Quart. J. Math. Oxford Ser. (2) 12 (1961), 304-312. Zbl0121.28403
  13. [13] J.-H. Evertse and J. H. Silverman, Uniform bounds for the number of solutions to Y n = f ( X ) , Math. Proc. Cambridge Philos. Soc. 100 (1986), 237-248. Zbl0611.10009
  14. [14] W. Feit, On symmetric balanced incomplete block designs with doubly transitive automorphism groups, J. Combin. Theory Ser. A 14 (1973), 221-247. Zbl0278.05016
  15. [15] W. Feit, Some consequences of the classification of finite simple groups, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 175-181. Zbl0454.20014
  16. [16] M. Fried, The field of definition of function fields and a problem in the reducibility of polynomials in two variables, Illinois J. Math. 17 (1973), 128-146. Zbl0266.14013
  17. [17] M. Fried, Arithmetical properties of function fields (II). The generalized Schur problem, Acta Arith. 25 (1973/74), 225-258. Zbl0229.12020
  18. [18] M. Fried, On a theorem of Ritt and related Diophantine problems, J. Reine Angew. Math. 264 (1974), 40-55. Zbl0278.12101
  19. [19] M. Fried, Exposition on an arithmetic-group theoretic connection via Riemann's existence theorem, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 571-601. 
  20. [20] M. Fried, Variables separated polynomials, the genus 0 problem, and moduli spaces, in: [21], pp. 169-228. Zbl1053.14509
  21. [21] K. Győry, H. Iwaniec and J. Urbanowicz (eds.), Number Theory in Progress (Proc. Internat. Conf. in Number Theory in Honor of A. Schinzel, Zakopane, 1997), de Gruyter, 1999. 
  22. [22] P. Kirschenhofer, A. Pethő and R. F. Tichy, On analytical and Diophantine properties of a family of counting polynomials, Acta Sci. Math. (Szeged) 65 (1999), 47-59. Zbl0983.11013
  23. [23] S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983. Zbl0528.14013
  24. [24] W. J. LeVeque, On the equation y m = f ( x ) , Acta Arith. 9 (1964), 209-219. Zbl0127.27201
  25. [25] R. Lidl, G. L. Mullen and G. Turnwald, Dickson Polynomials, Pitman Monographs Surveys Pure Appl. Math. 65, Longman Sci. Tech., 1993. 
  26. [26] J. F. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc. 23 (1922), 51-66. Zbl48.0079.01
  27. [27] A. Schinzel, Selected Topics on Polynomials, The Univ. of Michigan Press, Ann Arbor, 1982. 
  28. [28] J.-P. Serre, Lectures on the Mordell-Weil Theorem, Aspects Math. E15, Vieweg, Braunschweig, 1989. 
  29. [29] C. L. Siegel, The integer solutions of the equation y 2 = a x n + b x n - 1 + . . . + k , J. London Math. Soc. 1 (1926), 66-68; also: Gesammelte Abhandlungen, Band 1, 207-208. Zbl52.0149.02
  30. [30] C. L. Siegel, Über einige Anwendungen Diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys.-Math. Kl., 1929, Nr. 1; also: Gesammelte Abhandlungen, Band 1, 209-266. 
  31. [31] V. G. Sprindžuk, Classical Diophantine Equations in Two Unknowns, Nauka, Moscow, 1982 (in Russian); English transl.: Lecture Notes in Math. 1559, Springer, 1994. 
  32. [32] G. Turnwald, On Schur's conjecture, J. Austral. Math. Soc. 58 (1995), 312-357. Zbl0834.11052
  33. [33] H. A. Tverberg, A study in irreducibility of polynomials, Ph.D. thesis, Dept. of Math., Univ. of Bergen, 1968. 
  34. [34] P. M. Voutier, On the number of S-integral solutions to Y m = f ( X ) , Monatsh. Math. 119 (1995), 125-139. Zbl0816.11022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.