A bound for the discrepancy of digital nets and its application to the analysis of certain pseudo-random number generators

Gerhard Larcher

Acta Arithmetica (1998)

  • Volume: 83, Issue: 1, page 1-15
  • ISSN: 0065-1036

How to cite

top

Gerhard Larcher. "A bound for the discrepancy of digital nets and its application to the analysis of certain pseudo-random number generators." Acta Arithmetica 83.1 (1998): 1-15. <http://eudml.org/doc/207103>.

@article{GerhardLarcher1998,
author = {Gerhard Larcher},
journal = {Acta Arithmetica},
keywords = {low-discrepancy sequences; discrepancy estimate for digital nets; pseudo-random number generators},
language = {eng},
number = {1},
pages = {1-15},
title = {A bound for the discrepancy of digital nets and its application to the analysis of certain pseudo-random number generators},
url = {http://eudml.org/doc/207103},
volume = {83},
year = {1998},
}

TY - JOUR
AU - Gerhard Larcher
TI - A bound for the discrepancy of digital nets and its application to the analysis of certain pseudo-random number generators
JO - Acta Arithmetica
PY - 1998
VL - 83
IS - 1
SP - 1
EP - 15
LA - eng
KW - low-discrepancy sequences; discrepancy estimate for digital nets; pseudo-random number generators
UR - http://eudml.org/doc/207103
ER -

References

top
  1. [1] T. G. Lewis and W. H. Payne, Generalized feedback shift register pseudorandom number algorithm, J. Assoc. Comput. Mach. 20 (1973), 456-468. Zbl0266.65009
  2. [2] H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273-337. Zbl0626.10045
  3. [3] H. Niederreiter, The serial test for digital k-step pseudorandom numbers, Math. J. Okayama Univ. 30 (1988), 93-119. Zbl0666.65003
  4. [4] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conf. Ser. in Appl. Math. 63, SIAM, Philadelphia, 1992. 
  5. [5] H. Niederreiter, Factorization of polynomials and some linear-algebra problems over finite fields, Linear Algebra Appl. 192 (1993), 301-328. Zbl0845.11042
  6. [6] H. Niederreiter, The multiple recursive matrix method for pseudorandom number generation, Finite Fields Appl. 1 (1995), 3-30. Zbl0823.11041
  7. [7] H. Niederreiter, Improved bounds in the multiple-recursive matrix method for pseudorandom number and vector generation, Finite Fields Appl. 2 (1996), 225-240. Zbl0893.11031
  8. [8] H. Niederreiter and C. P. Xing, Low-discrepancy sequences obtained from algebraic function fields over finite fields, Acta Arith. 72 (1995), 281-298. Zbl0833.11035
  9. [9] H. Niederreiter and C. P. Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields Appl. 2 (1996), 241-273. 
  10. [10] H. Niederreiter and C. P. Xing, Quasirandom points and global function fields, in: S. Cohen and H. Niederreiter (eds.), Finite Fields and Applications (Glasgow, 1995), London Math. Soc. Lecture Note Ser. 233, Cambridge Univ. Press, Cambridge, 1996, 269-296. Zbl0932.11050
  11. [11] K. F. Roth, On irregularities of distribution, Mathematika 1 (1954), 73-79. Zbl0057.28604
  12. [12] W. M. Schmidt, Irregularities of distribution, VII, Acta Arith. 21 (1972), 45-50. Zbl0244.10035
  13. [13] R. C. Tausworthe, Random numbers generated by linear recurrence modulo two, Math. Comp. 19 (1965), 201-209. Zbl0137.34804

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.