Point Sets and Sequences with Small Discrepancy.

Harald Niederreiter

Monatshefte für Mathematik (1987)

  • Volume: 104, page 273-338
  • ISSN: 0026-9255; 1436-5081/e

How to cite

top

Niederreiter, Harald. "Point Sets and Sequences with Small Discrepancy.." Monatshefte für Mathematik 104 (1987): 273-338. <http://eudml.org/doc/178356>.

@article{Niederreiter1987,
author = {Niederreiter, Harald},
journal = {Monatshefte für Mathematik},
keywords = {discrepancy of nets; discrepancy of -sequences; point sets; - nets; -dimensional unit cube; Latin squares; finite projective planes; finite fields; algebraic coding theory; pseudorandom number generation; digital multistep method; GFSR method; open problems},
pages = {273-338},
title = {Point Sets and Sequences with Small Discrepancy.},
url = {http://eudml.org/doc/178356},
volume = {104},
year = {1987},
}

TY - JOUR
AU - Niederreiter, Harald
TI - Point Sets and Sequences with Small Discrepancy.
JO - Monatshefte für Mathematik
PY - 1987
VL - 104
SP - 273
EP - 338
KW - discrepancy of nets; discrepancy of -sequences; point sets; - nets; -dimensional unit cube; Latin squares; finite projective planes; finite fields; algebraic coding theory; pseudorandom number generation; digital multistep method; GFSR method; open problems
UR - http://eudml.org/doc/178356
ER -

Citations in EuDML Documents

top
  1. Harald Niederreiter, Chaoping Xing, Low-discrepancy sequences obtained from algebraic function fields over finite fields
  2. Gerhard Larcher, A bound for the discrepancy of digital nets and its application to the analysis of certain pseudo-random number generators
  3. Wolfgang Ch. Schmid, Reinhard Wolf, Bounds for digital nets and sequences
  4. Chaoping Xing, Harald Niederreiter, A construction of low-discrepancy sequences using global function fields
  5. Gerhard Larcher, Nets obtained from rational functions over finite fields
  6. Gerhard Larcher, Harald Niederreiter, Kronecker-type sequences and nonarchimedean diophantine approximations
  7. Henri Faure, Henri Chaix, Minoration de discrépance en dimension deux
  8. Harald Niederreiter, Low-discrepancy point sets obtained by digital constructions over finite fields
  9. Peter Kritzer, Friedrich Pillichshammer, Points sets with low discrepancy
  10. Friedrich Pillichshammer, Dyadic diaphony of digital sequences

NotesEmbed ?

top

You must be logged in to post comments.