On the distribution of primitive roots mod p
Cristian Cobeli; Alexandru Zaharescu
Acta Arithmetica (1998)
- Volume: 83, Issue: 2, page 143-153
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] D. A. Burgess, On character sums and primitive roots, Proc. London Math. Soc. (3) 12 (1962), 179-192. Zbl0106.04003
- [2] P. X. Gallagher, On the distribution of primes in short intervals, Mathematika 23 (1976), 4-9. Zbl0346.10024
- [3] D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992), 265-338. Zbl0739.11033
- [4] C. Hooley, On the intervals between consecutive terms of sequences, in: Proc. Sympos. Pure Math. 24, Amer. Math. Soc., 1973, 129-140.
- [5] J. Johnsen, On the distribution of powers in finite fields, J. Reine Angew. Math. 253 (1971), 10-19. Zbl0237.10026
- [6] S. Ramanujan, Highly composite numbers, Proc. London Math. Soc. (2) 14 (1915), 347-409. Zbl45.1248.01
- [7] B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. Zbl0122.05001
- [8] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204-207. Zbl0032.26102